SI 413: Programming Languages and Implementation

Course Policy, Fall AY2026

Instructors:

e Prof. Daniel S. Roche, 447 Hopper Hall, x36814, roche@usna.edu (Coordinator).

e LCDR Christopher Norine, USN, 442 Hopper Hall, x36826, norine@Qusna.edu.

Course Description: This course examines basic concepts underlying the design of modern pro-
gramming languages: types, control structures, abstraction mechanisms, inheritance, concurrency
and constructs for programming. The course includes programming assignments in several lan-
guages.

Credits: 2-2-3
Pre-requisites: SI342 and (IC312 or SY301)

Learning Objectives:

Upon completing this course, students should be able to:

1. Understand the functional programming paradigm and be able to solve problems in a func-
tional language (supports outcome CS-6).

Develop a vocabulary for describing programming languages (supports outcome CS-6).
Understand lexical analysis, parsing, and basic interpretation (supports outcome CS-6).
Implement a simple interpreter (supports outcome CS-6).

Learn a new programming language independently and use it to solve basic tasks (supports
outcome CS-6).

Ol o

Student OQutcomes:

Graduates of the program will have an ability to:

1. Analyze a complex computing problem and to apply principles of computing and other relevant
disciplines to identify solutions.

2. Design, implement, and evaluate a computing-based solution to meet a given set of computing
requirements in the context of the program’s discipline.

3. Communicate effectively in a variety of professional contexts.

4. Recognize professional responsibilities and make informed judgments in computing practice based
on legal and ethical principles.

5. Function effectively as a member or leader of a team engaged in activities appropriate to the
program’s discipline.

CS-6. Apply computer science theory and software development fundamentals to produce computing-
based solutions.

DS-6. Apply theory, techniques and tools throughout the data analysis lifecycle and employ the
resulting knowledge to satisfy stakeholders’ needs.


https://roche.work/
mailto:roche@usna.edu
https://www.usna.edu/Users/cs/norine/
mailto:norine@usna.edu

Course schedule:

The course is structured around a single task: designing and implementing a new programming
language. Each unit is centered on a few additional programming language capabilities and a series
of four tasks:

(1) Designing and specifying the syntax and semantics of a novel language to support the required
capabilities;

(2) Writing example programs in the novel language (which will later be used for testing);

(3) Implementing a REPL-based interpreter for the language in Java;

(4) Implementing a compiler for the language using LLVM.

To support these concrete tasks within each unit, we will also introduce various new concepts and
examples from existing programming languages.

e Unit 1: Just Strings (3 weeks)

— Capabilities: literals, input/output, unary and binary operators.

— Concepts: Specifications, undefined behavior, syntax and semantics, expressions and
statements, interpreters and compilers

— Languages: LLVM IR

Unit 2: Variable and Booleans (3 weeks)

— Capabilities: Boolean literals, string-boolean and logical operators, named variables
— Concepts: Scanning and Parsing, symbol table, memory allocation, errors, type safety
— Languages: Scheme

Unit 3: Taking Control (2 weeks)

— Capabilities: Conditionals, loops

— Concepts: Abstract syntax trees, basic blocks, control flow graph, single static assign-
ment, phi nodes

— Languages: Rust

Midterm exam (Wednesday, October 15)

Unit 4: Functions (3 weeks)

— Capabilities: Function calls, lexical scope
— Concepts: Heap allocation, anonymous functions, frames and closures
— Languages: Scheme

Unit 5: Numbers (2 weeks)

— Capabilities: Integer literals and operations, builtin functions, type checking
— Concepts: Static and dynamic typing
— Languages: Haskell

Unit 6: OOPs (2 weeks)

— Capabilities: Objects with basic inheritance
— Concepts: Named types, dispatch, polymorphism
— Languages: Esoteric languages (Piet, Befunge, iogii)



Updates to the course policy: In case this course policy needs to be changed during the semester,
students will be notified by email and verbally during class. The current version will always be
posted on the course website.

Textbooks:

e Michael L. Scott. Programming Language Pragmatics, Morgan Kaufmann Publishers. Op-
tional but recommended. The current edition is the 4th (2015), but any edition is OK. Page
numbers in the notes are from the 3rd edition.

e Abelson, Sussman, and Sussman. Structure and Interpretation of Computer Programs, MIT
Press. Out of print but available used or for free online.

e Aho, Lam, Sethi, and Ullman. Compilers: Principles, Techniques, and Tools, Pearson, 2006.
Completely optional, recommended for those wishing to gain deeper knowledge of compilers.

Course Website: The primary website for course content is
https://faculty.cs.usna.edu/ " roche/413/

This site is only available on the Yard, on the USNA intranet. To access exactly the same content
from anywhere else, you can also use the following unofficial mirror:

https://www.roche.work /413/

Extra Instruction: Extra instruction (EI) is strongly encouraged and should be scheduled by fol-
lowing the instructions on your instructor’s homepage. EI is not a substitute lecture; students
should come prepared with specific questions or problems.

Collaboration: The guidance in the Honor Concept of the Brigade of Midshipmen and the Com-
puter Science Department Honor Policy must be followed at all times. See https://www.usna.edu/
CS/resources/honor.php. Specific instructions for this course:

e Homework: The purpose of homework assignments is to provide example problems of the type
that will appear on written exams. Solutions will be provided and usually reviewed in class,
and credit will be given according to completion only. Students are strongly encouraged to
honestly try solving problems themselves before using any assistance from other students, web
searches, or Al tools.

e Labs: These represent the main work of the class, and each student is required to completely
understand the work they turn in. Students should expect to be asked to explain in detail
how and why their code works to demonstrate this understanding.

Collaboration and assistance from other humans is permitted but should be limited to con-
ceptual discussions and debugging help, never sharing or copying even small parts of working
code. Any assistance received must be clearly and specifically documented.

e Exams: No collaboration is allowed. Each student may prepare and bring a single study sheet
to the midterm and final exams, but these must be prepared individually (no photocopies).
Any group study guides should be shared with the instructor.


https://www.cs.rochester.edu/~scott/pragmatics/
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-4.html
https://www.pearson.com/us/higher-education/program/Aho-Compilers-Principles-Techniques-and-Tools-2nd-Edition/PGM167067.html
https://faculty.cs.usna.edu/~roche/413/
https://www.roche.work/413/
https://www.usna.edu/CS/resources/honor.php
https://www.usna.edu/CS/resources/honor.php

All collaboration and outside sources should always be cited. The same rules apply for giving
and receiving assistance. If you are unsure whether a certain kind of assistance or collaboration is
permitted, you should assume it is not, work individually, and seek clarification from your instructor.

Use of Generative AI: The use of generative Al tools for homework is permitted but discouraged
before honestly trying to solve the problems by yourself. (Remember the purpose of homework is

to help you prepare for exams.)
For labs, use of the USNA-provided generative Al tool Gemini is permitted with the following
limitations:

e Complete transcripts of any Gemini conversation relating to your work on this lab must be
turned in alongside the assignment. To get a transcript in markdown form, just ask Gemini to
“give me a complete transcript of this entire conversation in markdown, including all prompts
and responses verbatim.”

e Do not ask Gemini to complete your entire assignment, but only for help with specific small
parts or understanding of concepts. Generally only small pieces of code (like one or two lines)
should be copied directly into your work, and as stated above you will be expected to explain
(without using Gemini) how this code works after turning it in.

Classroom Conduct:

Everyone in the classroom will show appropriate respect to each other at all times.

The section leader is responsible for recording attendance, bringing the class to attention, notifying
the CS department office if the instructor is more than 5 minutes late, and directing the class in
useful work in the instructor’s absence.

Drinks are permitted, but they must be in closable containers. Food, alcohol, and tobacco (of all
kinds) are prohibited. The use of laptops, tablets, or other devices during class is at the discretion
of the instructor; such use must be related to the class and should never serve as a distraction to
other students.

The class will follow the non-attribution of communication practice (Chatham House Rule).

Absences:

Students are responsible for all class material. Notes will be posted for each lecture, along with
recommended readings. However, this material is not exhaustive and students missing class should
arrange to copy notes from a classmate.

Late Policy: No work will be accepted for a grade after stated deadlines. The same deadlines apply
to all students, even in cases of excused absences. Students travelling may need to work ahead in
order to get their work submitted on time.

Exceptions to this rule are possible under exceptional circumstances, at the discretion of the in-
structor, and especially for unforeseen health or family issues. Just ask.

Grading:



For labs we will use a form of specifications grading. All parts of the labs (language specification,
example programs, interpreter implementation, and compiler implementation) will have specific
standards which must all be met in order to earn a stated number of points for that part. Until
the standard is met, there will be no partial credit. However, provided sufficient effort and progress
are demonstrated and subject to the end of classes date, any incomplete parts may be revised and
resubmitted within one week (and re-revised, under the same conditions).

Your final grade will be computed as follows:

5%: Weekly homeworks (completion-based grading)
50%: Labs (language specification and implementation)
10%: Midterm exam

35%: Final exam

6 and 12 week grades will be computed based on this same breakdown, scaled according to the
amount of work completed so far.
Plus/minus grades will be assigned based on the following numerical cutoffs:

- +
A 90-92 93-100
B 80-82 838 8789
C 70-72 7376 7779
D 60-66 6769
F 0-59

Submitted: Prof. Daniel S. Roche



	Instructors
	Course Description
	Credits
	Pre-requisites
	Learning Objectives
	Student Outcomes
	Course schedule
	Updates to the course policy
	Textbooks
	Course Website
	Extra Instruction
	Collaboration
	Use of Generative AI
	Classroom Conduct
	Absences
	Late Policy
	Grading
	Submitted

