
The essence of being human is that one does not seek perfec-
tion,. . . that one is prepared in the end to be defeated and bro-
ken up by life, which is the inevitable price of fastening one’s love
upon other human individuals. No doubt alcohol, tobacco, and
so forth, are things that a saint must avoid, but sainthood is also
a thing that human beings must avoid.

—George Orwell, “Reflections on Gandhi” (1949)

Chapter 6

Sparse perfect powers

We examine the problem of detecting when a given sparse polynomial f is equal to hr

for some other polynomial h and integer r ≥ 2. In this case we say f is a perfect power, and
h is its r th root. We give randomized algorithms to detect when f is a perfect power, by re-
peatedly evaluating the polynomial in specially-chosen finite fields and checking whether the
evaluations are themselves perfect powers. These detection algorithms are randomized of the
Monte Carlo type, meaning that they are always fast but may return an incorrect answer (with
small probability). In fact, the only kind of wrong answer ever returned will be a false positive,
so we have shown that the perfect power detection problem is in the complexity class coRP.
As a by-product, these decision problems also compute an integer r > 2 such that f is an r th
perfect power, if such an r exists.

Once the power r is known, we turn to the problem of actually computing the perfect r th
root of f , and give two different algorithms. In the case of rational number coefficients, we ex-
hibit a deterministic algorithm that is output-sensitive; i.e., the cost of the algorithm depends
on the size of the perfect root h in the sparse representation. The algorithm relies on poly-
nomial factorization over algebraic extension fields to achieve output-sensitive polynomial
time.

The second algorithm we consider for computing the perfect root is inspired by the New-
ton iteration algorithm that is most efficient for dense polynomials. Our modified Newton
iteration is more sensitive to the sparsity of the problem, and carefully avoids blow-up of
intermediate results, but only if a certain conjecture regarding the sparsity of intermediate
powers is true. We have evidence to believe this conjecture, and under that assumption our
algorithm is very efficient and practical.
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A preliminary version of this work appeared at ISSAC 2008 (Giesbrecht and Roche, 2008),
and further progress has been presented in an article accepted to appear in the Journal of
Symbolic Computation (Giesbrecht and Roche, 2011). We are very grateful to the helpful dis-
cussions of these topics with Erich Kaltofen and Igor Shparlinski, and particularly to Pascal
Koiran for pointing out the perfect power certification idea using logarithmic derivatives that
we will discuss in Section 6.3.1.

6.1 Background

This chapter and its sequel focus on computational problems where the input polynomial is
given in the sparse representation. Recall that this means we write

f =
∑

1≤i≤t

c i x e i ∈R[x1, . . . ,x`], (6.1)

where c1, . . . , c t ∈ R∗, e 1, . . . , e t ∈ N` are distinct exponent tuples with 0 ≤ ‖e 1‖1 ≤ · · · ≤ ‖e t ‖1 =
deg f , and x e i is the monomial x e i 1

1 x e i 2
2 · · ·x

e i`

` of total degree ‖e i‖1 =
∑

1≤j≤` e i j . We say f is
t -sparse and write τ( f ) = t . We present algorithms which require time polynomial in τ( f )
and log deg f .

6.1.1 Related work

Computational work on sparse polynomials has proceeded steadily for the past three decades.
We briefly pause to examine some of the most significant results in this area.

David Plaisted (1977; 1984) initiated the study of computational complexity for sparse
polynomial computations. His early work showed, surprisingly, that some basic problems
that admit fast algorithms for densely-represented polynomials are NP-hard when the input
is sparse. In particular, Plaisted gives a reduction from 3-SAT to relative primality testing, the
problem of determining whether a pair of sparse polynomials f , g ∈ Z[x ] has any non-trivial
common factor. This implies for instance that a polynomial-time greatest common divisor
algorithm for sparse polynomials is unlikely to exist.

A number of other researchers have investigated complexity-theoretic problems relating
to sparse polynomials as well. Recall that #P is the class of problems that counts accepting
inputs for problems in NP, and important examples of a #P-complete problems are counting
the number of satisfying assignments for a boolean formula or computing the permanent of a
matrix. Quick (1986) and von zur Gathen, Karpinski, and Shparlinski (1996) followed Plaisted
by proving (among other results) that the sparse gcd problem is actually #P-complete, when
the problem is defined to determine the degree of the greatest common divisor of two given
sparse polynomials.

Observe that relative primality of two polynomials corresponds to their gcd having min-
imal degree, while divisibility of sparse polynomials corresponds to the degree of their gcd
being maximal. It is not yet known whether sparse divisibility testing can be performed in
polynomial time, but Grigoriev, Karpinski, and Odlyzko (1996) showed the existence of short
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proofs of non-divisibility, meaning the problem is in coNP. Later, Karpinski and Shparlinski
(1999) showed that testing square-freeness of sparse polynomials is also NP-hard, via a reduc-
tion from relative primality testing.

But not every computational problem with sparse polynomials is hard. In fact, there has
been significant progress in developing polynomial-time algorithms for sparse polynomial
computation over the years. While some operations, such as computing derivatives, are triv-
ially polynomial-time in the sparse representation, many problems require non-trivial algo-
rithms. One major area of research in this direction regards sparse polynomial interpolation,
the topic of the next two chapters.

Computing low-degree factors and in particular roots of sparse polynomials is another
area of rapid progress in algorithmic development (Cucker, Koiran, and Smale, 1999; Lenstra,
1999; Kaltofen and Koiran, 2005, 2006). These algorithms generally take a degree bound d and
a sparse polynomial f and compute all factors of f with degree at most d , in polynomial-time
in d and the sparse representation size of f . Since the number of terms in high-degree factors
may be exponentially larger than the size of the input, this is in some sense the best that can
be hoped for without considering output-sensitive algorithms.

We now turn to the topic of this chapter, namely detecting and computing perfect power
factorizations of sparse polynomials. The algorithm we present for perfect powers is interest-
ing in that, unlike the factorization methods mentioned above, the sparse factors it produces
may have exponentially high degree in the size of the input.

Two well-known techniques can be applied to the problem of testing for perfect powers,
and both are very efficient when f = hr is given in the dense representation. We can compute
the squarefree decomposition of f as in (Yun, 1976), and determine whether f is a perfect
power by checking whether the greatest (integer) common divisor of the exponents of all non-
trivial factors in the squarefree decomposition is at least 2. An even faster method (in theory
and practice) to find h given f = hr is by a Newton iteration. This technique has also proven to
be efficient in computing perfect roots of (dense) multi-precision integers (Bach and Soren-
son, 1993; Bernstein, 1998). In summary however, we note that both these methods require
at least linear time in the degree of f , which may be exponential in the sparse representation
size.

Newton iteration has also been applied to finding perfect polynomial roots of lacunary (or
other) polynomials given by straight-line programs. Kaltofen (1987) shows how to compute a
straight-line program for h, given a straight-line program for f = hr and the value of r . This
method has complexity polynomial in the size of the straight-line program for f , and in the
degree of h, and in particular is effective for large r . Our algorithms, which require input in
the sparse representation, are not as general, but they do avoid the dependence on the degree
of h. Interestingly, we will show that the case of large r , which is important for straight-line
programs, cannot happen for sparse polynomials, at least over the rings that we will consider.

Closest to this current work, (Shparlinski, 2000) shows how to recognize whether f = h2 for
a lacunary polynomial f ∈Fq [x ]. Shparlinski uses random evaluations and tests for quadratic
residues. How to determine whether a lacunary polynomial is any perfect power is posed as
an open question; our Algorithm 6.4 demonstrates that this problem can be solved in ran-
domized polynomial-time.
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6.1.2 Overview of results

We will always assume that the sparsity τ( f )≥ 2. Otherwise f = x n , and determining whether
f is a perfect power is equivalent to determining whether n ∈N is composite. This is of course
tractable, but producing an r ≥ 2 such that f is a perfect r th power is then equivalent to long
integer factorization, a notoriously difficult problem in number theory that we do not solve
here. Surprisingly, the intractability of computing such an r is avoided when τ( f )≥ 2.

We first consider the problem of detecting perfect powers and computing the power r for
the univariate case, where we write

f =
∑

1≤i≤t

c i x e i ∈R[x ], (6.2)

with integer exponents 0≤ e1 < e2 < · · ·< e t = deg f .

Two cases for the ring R are handled: the integers and finite fields of characteristic p
greater than the degree of f . When f has integer coefficients, our algorithms also require
time polynomial in the size of those integers in the IMM model.

To be precise about this definition of size, first recall from Chapter 1 that size(a ) for a ∈Z is
the number of machine words needed to represent a in an IMM. So, if w is the size of machine
words, size(a ) = dlog2(|a |+1)/w e+1. For f ∈Z[x ]written as in (6.2), define:

size( f ) =
t
∑

i=1

size(c i )+
t
∑

i=1

size(e i ). (6.3)

We will often employ the following upper bound for simplicity:

size( f )≤ t
�

H ( f )+ size(deg f )
�

, (6.4)

where H ( f ) is defined as max1≤i≤t size(c i ).

For the analysis, as in the previous chapter, we will write M(r ) for the number of ring oper-
ations required for degree-r dense polynomial multiplication. For a ∈N, We also define N(a )
to be the number of IMM operations required to multiply two integers at most a in absolute
value. From Section 1.4, we know that N(a ) ∈ O(size(a ) log size(a )). Our motivation for the
N(a ) notation is purely for clarity and brevity, not to reflect the possibility of improved algo-
rithms for this problem in the future. One consequence is that, if the finite field elements are
represented in machine words on a normal IMM, multiplication of degree-r dense polynomi-
als in Fp [x ] is performed with

O(N (p r ))∈O(r size(p ) · log(r + size(p )))∈O(rN(p ) log r )

IMM operations, by encoding the whole polynomial into an integer, as discussed in Chapter 1.

Notice that the algorithm for integer polynomials will also cover those with rational co-
efficients, since if f ∈ Q[x ], we can simply work with f = c f ∈ Z[x ] for the smallest possible
c ∈Z∗.

We present polynomial-time algorithms for polynomials over finite fields and over the
integers. Efficient techniques will also be presented for reducing the multivariate case to the
univariate one, and for computing a root h such that f = hr .
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6.2 Testing for perfect powers

In this section we describe a method to determine if a sparse polynomial f ∈R[x ] is a perfect
power. That is, do there exist h ∈ R[x ] and r > 1 such that f = hr ? Importantly, the cost does
not depend on the sparsity of h. That is, the root h could have exponentially more nonzero
coefficients than the input polynomial f . However, some widely-believed conjectures indi-
cate that this will never happen, as we will discuss later. In any case, our algorithms in this
section will only compute the power r ∈N, not the polynomial root h.

We first describe algorithms to test if an f ∈ R[x ] is an r th power of some polynomial
h ∈R[x ], where f and r are both given and r is assumed to be prime. We present and analyse
variants that work over finite fields Fq and over Z. In fact, these algorithms for given r are
for black-box polynomials: they only need to evaluate f at a small number of points. That
this evaluation can be done quickly is a very useful property of sparse polynomials over finite
fields.

For a sparse polynomial f we then show that, in fact, if h exists at all then r must be small
unless f = x n . (By “small”, we mean bounded in value by the size of the sparse representation
of f .) If f is a non-trivial perfect power, then there certainly exists a prime r such that f is
an r th power. So in fact the restrictions that r is small and prime are sufficient to cover all
interesting cases, and our method is complete.

6.2.1 Detecting given r th powers

Our main tool in this work is the following theorem which says that, with reasonable prob-
ability, a polynomial is an r th power if and only if the modular image of an evaluation in a
specially constructed finite field is an r th power. Put another way, if f is not an r th power,
then the finite field will have sufficiently many witnesses to this fact.

Theorem 6.1. Let % ∈ Z be a prime power and r ∈ N a prime dividing % − 1. Suppose that
f ∈F%[x ] has degree n ≤ 1+p%/2 and is not a perfect r th power in F%[x ]. Then

R (r )f = #
¦

c ∈F% : f (c )∈F% is an r th power
©

≤
3%

4
.

Proof. The r th powers in F% form a subgroup H of F∗% of index r and size (% − 1)/r in F∗%.

Also, a ∈ F∗% is an r th power if and only if a (%−1)/r = 1. We use the method of “completing the
sum” from the theory of character sums. We refer to (Lidl and Niederreiter, 1983), Chapter
5, for an excellent discussion of character sums. By a multiplicative character we mean a
homomorphism χ : F∗% → C which necessarily maps F% onto the unit circle. As usual we
extend our multiplicative characters χ so that χ(0) = 0, and define the trivial character χ

0
(a )

to be 0 when a = 0 and 1 otherwise.

For any a ∈F∗%,

1

r

∑

χr=χ0

χ(a ) =

(

1, if a ∈H ,

0, if a 6∈H ,
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where χ ranges over all the multiplicative characters of order r on F∗% — that is, all characters
that are isomorphic to the trivial character on the subgroup H . Thus

R (r )f =
∑

a∈F∗%







1

r

∑

χr=χ0

χ( f (a ))






=

1

r

∑

χr=χ0

∑

a∈F∗%

χ( f (a ))

≤
%

r
+

1

r

∑

χr=χ0
χ 6=χ0

�

�

�

�

�

�

∑

a∈F%

χ( f (a ))

�

�

�

�

�

�

.

Here we use the obvious fact that
∑

a∈F∗%

χ
0
( f (a ))≤

∑

a∈F%

χ
0
( f (a )) =%−d ≤%,

where d is the number of distinct roots of f in F%. We next employ the powerful theorem
of (Weil, 1948) on character sums with polynomial arguments (see Theorem 5.41 of (Lidl and
Niederreiter, 1983)), which shows that if f is not a perfect r th power of another polynomial,
and χ has order r > 1, then

�

�

�

�

�

�

∑

a∈F%

χ( f (a ))

�

�

�

�

�

�

≤ (n −1)%1/2 ≤
%

2
,

using the fact that we insisted n ≤ 1+p%/2. Summing over the r −1 non-trivial characters of
order r , we deduce that

R (r )f ≤
%

r
+

r −1

r
·
%

2
≤

3%

4
,

since r ≥ 2.

6.2.2 Certifying specified powers over Fq [x ]

Theorem 6.1 allows us to detect when a polynomial f ∈F%[x ] is a perfect r th power, for known
r dividing %− 1: choose random α ∈ F% and evaluate ξ= f (α)(%−1)/r ∈ F%. Recall that ξ= 1 if
and only if f (α) is an r th power.

Then we have two cases to consider. If f is an r th power, then clearly f (α) is an r th power
as well, and for any α∈F%, we always have ξ= 1.

Otherwise, if f is not an r th power, Theorem 6.1 demonstrates that for at least 1/4 of the
elements of F%, f (α) is not an r th power. Thus, for α chosen randomly from F% we would
expect ξ 6= 1 with probability at least 1/4.

This idea works whenever the size of the multiplicative group is a multiple of the power r .
For coefficients in an arbitrary finite field Fq , where q − 1 is not divisible by r , we work in a
suitably chosen extension finite extension field. First, the requirement that the characteristic
of Fq is strictly greater than deg f means that q = p e for some prime p greater than deg f .
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Since r must be less than deg f , this implies that r - p , and therefore that r - q . Then from
Fermat’s Little Theorem, we know that r | (q r−1 − 1) and so we construct an extension field
Fq r−1 over Fq and proceed as above. Algorithm 6.1 gives a more formal presentation of this
idea.

Algorithm 6.1: Perfect r th power over Fq

Input: A prime power q , f ∈Fq [x ] of degree n such that char(Fq )< n ≤ 1+pq/2, r ∈N
a prime dividing n , and ε∈R>0

Output: true if f is the r th power of a polynomial in Fq [x ]; otherwise false with
probability at least 1−ε.

1 Find an irreducible Γ∈Fq [z ] of degree r −1, successful with probability at least ε/2
2 %←q r−1

3 Define F% =Fq [z ]/(Γ)
4 m ← 2.5(1+

�

log2(1/ε)
�

)
5 for i from 1 to m do
6 Choose random α∈F%
7 ξ← f (α)(%−1)/r ∈F%
8 if ξ 6= 1 then return false

9 return true

To accomplish Step 1, a number of fast probabilistic methods are available to find irre-
ducible polynomials. We employ the algorithm of (Shoup, 1994). This algorithm requires
O((r 2 log r + r logq ) log r log log r ) operations in Fq . It is probabilistic of the Las Vegas type,
meaning always correct and probably fast. We modify this in the trivial way to a Monte Carlo
algorithm that is always fast and probably correct. That is, we allow the algorithm to execute
the specified number of operations, and if no answer has been returned after this time, the
algorithm is halted and returns “fail”. From the run-time analysis of the Las Vegas algorithm,
the probability of failure is at most 1/2, and the algorithm never returns an incorrect answer.
This modification allows us to use Shoup’s algorithm in our Monte Carlo algorithm. To obtain
an irreducible Γ with failure probability at most ε/2 we run (our modified) Shoup’s algorithm
1+

�

log2(1/ε)
�

times.

The restriction that n ≤ 1+pq/2 (or equivalently that q ≥ 4(n−1)2) is not at all limiting. If
this condition is not met, simply extend Fq with an extension of degree ν =

 

logq (4(n −1)2)
£

and perform the algorithm over Fqν . At worst, each operation in Fqν requires O(M(log n ))
operations in Fq , which will not be significant in the overall complexity.

Theorem 6.2. Let q , f , n , r,ε be as in the input to the Algorithm 6.1. If f is a perfect r th power
the algorithm always reports this. If f is not a perfect r th power then, on any invocation, this is
reported correctly with probability at least 1−ε.

Proof. It is clear from the above discussion that the algorithm always works when f is perfect
power. When f is not a perfect power, each iteration of the loop will obtain ξ 6= 1 (and hence a
correct output) with probability at least 1/4. By iterating the loop m times we ensure that the
probability of failure is at most ε/2. Adding this to the probability that Shoup’s algorithm (for
Step 1) fails yields a total probability of failure of at most ε.
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Theorem 6.3. On inputs as specified, Algorithm 6.1 requires

O((rM(r ) log r logq ) · log(1/ε))

operations in Fq , plus the cost to evaluate f (α) at O(log(1/ε)) points α∈Fq r−1 .

Proof. As noted above, Shoup’s 1994 algorithm requires O((r 2 log r+r logq ) log r log log r ) field
operations per iteration, which is within the time specified. The main cost of the loop in
Steps 5–8 is computing f (α)(%−1)/r , which requires O(log%) or O(r logq ) operations in F% using
repeated squaring, plus one evaluation of f at a point in F%. Each operation in F% requires
O(M(r )) operations in Fq , and we repeat the loop O(log(1/ε)) times.

Combining these facts, we have that our Monte Carlo algorithm for perfect power testing
is correct and works over any finite field of sufficiently large characteristic.

Corollary 6.4. Given f ∈Fq [x ] of degree n with τ( f ) = t , and r ∈N a prime dividing n, we can
determine if f is an r th power with

O
��

rM(r ) log r logq + tM(r ) log n
�

· log(1/ε)
�

operations in Fq , provided n > char(Fq ). When f is an r th power, the output is always correct,
while if f is not an r th power, the output is correct with probability at least 1−ε.

The results here are counting field operations on an algebraic IMM. However, since the
field is specified carefully as Fq , and we know how to represent such elements on the integer
side, we could demand all computation be performed on a normal IMM and count word op-
erations. The consequences for the complexity would be that the cost as stated is increased
by a factor of O(N(q )), but every M(r ) can be written simply as O(r log r ), as discussed above.

6.2.3 Certifying specified powers over Z[x ]

For an integer polynomial f ∈ Z[x ], we proceed by working in the homomorphic image of
Z in Fp (and then in an extension of that field). We must ensure that the homomorphism
preserves the perfect power property we are interested in, at least with high probability. For
any polynomial g ∈ F[x ], let disc(g ) = res(g , g ′) be the discriminant of g (the resultant of g
and its first derivative). It is well known that g is squarefree if and only if disc(g ) 6= 0 (see e.g.,
von zur Gathen and Gerhard, 2003, §15.2). Also define lcoeff(g ) as the leading coefficient of
g , the coefficient of the highest power of x in g . Finally, for g ∈Z[x ] and p a prime, denote by
g rem p the unique polynomial in Fp [x ]with all coefficients in g reduced modulo p .

Lemma 6.5. Let f ∈ Z[x ] and f̃ = f /gcd( f , f ′) its squarefree part. Let p be a prime such that
p -disc( f̃ ) and p - lcoeff( f ). Then f is a perfect power in Z[x ] if and only if f rem p is a perfect
power in Fp [x ].
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Proof. Clearly if f is a perfect power, then f rem p is a perfect power in Z[x ]. To show the
converse, assume that f = f s1

1 · · · f sm
m for distinct irreducible f 1, . . . , f m ∈ Z[x ], so f̃ = f 1 · · · f m .

Clearly f ≡ f s1
1 · · · f sm

m mod p as well, and because p - lcoeff( f ) we know deg( f i rem p ) = deg f i

for 1≤ i ≤m . Since p -disc( f̃ ), f̃ rem p is squarefree (see (von zur Gathen and Gerhard, 2003),
Lemma 14.1), and each of the f i rem p must be pairwise relatively prime and squarefree for
1≤ i ≤m . Now suppose f rem p is a perfect r th power modulo p . Then we must have r |s i for
1≤ i ≤m . But this immediately implies that f is a perfect power in Z[x ] as well.

Given any polynomial g = g 0+ g 1x + · · ·+ g m x m ∈Z[x ], we define the height or coefficient
∞-norm of g as



g




∞ =maxi |g i |. Similarly, we define the coefficient 1-norm of g as


g




1
=

∑

i |g i |, and 2-norm as


g




2
=
�
∑

i |g i |2
�1/2

. With f , f̃ as in Lemma 6.5, f̃ divides f , so we can
employ the factor bound of (Mignotte, 1974) to obtain



 f̃




∞ ≤ 2n


 f




2
≤ 2n

p

n +1 ·


 f




∞ .

Since disc( f̃ ) = res( f̃ , f̃ ′) is the determinant of matrix of size at most (2n − 1) × (2n − 1),
Hadamard’s inequality implies

|disc( f̃ )| ≤
�

2n (n +1)1/2


 f




∞

�n−1 �
2n (n +1)3/2



 f




∞

�n
< 22n 2

(n +1)2n ·


 f




2n

∞ .

Also observe that | lcoeff( f )| ≤


 f




∞. Thus, the product disc( f̃ ) · lcoeff( f ) has at most

µ=











l

log2

�

22n 2 (n +1)2n


 f




2n+1

∞

�m

�

log2

�

4 (n −1)2
��











prime factors greater than 4(n−1)2 (we require the lower bound 4(n−1)2 to employ Theorem
6.1 without resorting to field extensions). Choose an integer γ≥ 4(n−1)2 such that the number
of primes between γ and 2γ is at least 4µ+ 1. By (Rosser and Schoenfeld, 1962), Corollary 3,
the number of primes in this range is at least 3γ/(5 lnγ) for γ≥ 21.

Now let γ ≥ max{21µ lnµ, 226}. It is easily confirmed that if µ ≤ 6 and γ ≥ 226, then
3γ/(5 lnγ)> 4µ+1. Otherwise, if µ≥ 7, then ln(21 lnµ)< 2 lnµ, so

γ

lnγ
≥

21µ lnµ

lnµ+ ln(21 lnµ)
> 7µ,

and therefore 3γ/(5 lnγ)> 21µ/5> 4µ+1.

Thus, if γ ≥ max{21µ lnµ, 226}, then a random prime not equal to r in the range γ . . . 2γ
divides lcoeff( f ) ·disc( f ) with probability at most 1/4. Primes p of this size have only log2 p ∈
O(log n + log log



 f




∞) bits.

Theorem 6.6. Let f ∈Z[x ] of degree n, r ∈N dividing n and ε∈R>0. If f is a perfect r th power,
then Algorithm 6.2 always reports this. If f is not a perfect r th power, on any invocation of the
algorithm, this is reported correctly with probability at least 1−ε.
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Algorithm 6.2: Perfect r th power over Z
Input: f ∈Z[x ] of degree n ; r ∈N a prime dividing n ; ε∈R>0;
Output: true if f is the r th power of a polynomial in Z[x ]; false otherwise

1 µ←
ll

log2

�

22n 2 (n +1)2n


 f




2n+1

∞

�m

/
�

log2

�

4 (n −1)2
��

m

2 γ←max{
�

21µ lnµ
�

, 4(n −1)2, 226}
3 for i from 1 to

�

log2(1/ε)
�

do
4 p ← random prime in the range γ . . . 2γ
5 if Algorithm 6.1 returns false on input (p , f rem p , r , 1/4) then return false

6 return true

Proof. If f is an r th power then so is f rem p for any prime p , and so is any f (α) ∈ Fp . Thus,
the algorithm always reports that f is an r th power. Now suppose f is not an r th power.
If p | disc( f ) or p | lcoeff( f ) it may happen that f rem p is an r th power. This happens with
probability at most 1/4 and we will assume that the worst happens in this case. When p -
disc( f ) and p - lcoeff( f ), the probability that Algorithm 6.1 incorrectly reports that f is an r th
power is also at most 1/4, by our choice of parameter ε in the call on step 5. Thus, on any
iteration of steps 3–5, the probability of finding that f is an r th power is at most 1/2. The
probability of this happening

�

log2(1/ε)
�

times is at most ε.

Theorem 6.7. On inputs as specified, Algorithm 6.2 requires

O
�

r 2 log2 r · (log n + loglog


 f




∞)
2 · (loglog n + logloglog



 f




∞) · log(1/ε)
�

or O (̃r 2 · (size( f ))2 · log(1/ε)) word operations in the IMM model, plus the cost to evaluate
f (α)mod p at O(log(1/ε)) points α∈Fp for primes p with log p ∈O(log n + log log



 f




∞).

Proof. The number of operations required by each iteration is dominated by Step 5, for which
O(rM(r ) log r log p ) operations in Fp are sufficient by Theorem 6.3. Since log p ∈ O(log n +
log log



 f




∞), and using the multiplication algorithm of Section 1.4, we obtain the final com-
plexity as stated.

The cost of evaluating a t -sparse polynomial f ∈Z[x ]modulo a prime p is

O(t · size(


 f




∞) · size(p )+ t log n ·N(p ))

word operations, which is O (̃size( f ) · size(p )). Furthermore, from the theorem, we see that
each prime has size bounded by size( f ). We then obtain the following corollary for t -sparse
polynomials in Z[x ].

Corollary 6.8. Given f ∈Z[x ] of degree n and r ∈N a prime dividing n, we can determine if f
is an r th power with

O˜
�

r 2 ·
�

size f
�2 · log (1/ε)

�

machine word operations. When f is an r th power, the output is always correct, while if f is
not an r th power, the output is correct with probability at least 1−ε.
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6.2.4 An upper bound on r

The algorithms we have seen so far require the power r to be known in advance. To adapt
these to the general situation that r is not known, we show that r must be small compared to
the sparse representation size of f , and therefore there are not too many “guesses” of r that
we must make in order to solve the problem.

Specifically, we show in this subsection that if f = hr and f 6= x n then the value of r is
polynomially bounded by τ( f ). Over Z[x ] we show that ‖h‖2 is small as well. A sufficiently
strong result over many fields is demonstrated by (Schinzel, 1987), Theorem 1, where it is
shown that if f has sparsity t ≥ 2 then t ≥ r +1 (in fact a stronger result is shown involving the
sparsity of h as well). This holds when either the characteristic of the ground field of f is zero
or greater than deg f .

Here we give a (much) simpler result for polynomials in Z[x ], which bounds ‖h‖2 and is
stronger at least in its dependency on t though it also depends upon the size of coefficients
in f .

Theorem 6.9. Suppose f ∈ Z[x ] with deg f = n and τ( f ) = t , and f = hr for some h ∈ Z[x ] of

degree s and r ≥ 2. Then ‖h‖2 ≤


 f




1/r

1
.

Proof. Let p > n be prime and ζ∈C a p th primitive root of unity. Then

‖h‖2
2 =

∑

0≤i≤s

|h i |2 =
1

p

∑

0≤i<p

|h(ζi )|2.

(this follows from the fact that the Discrete Fourier Transform (DFT) matrix is orthogonal).
In other words, the average value of |h(ζi )|2 for i = 0 . . . p − 1 is ‖h‖2

2, and so there exists a
k ∈ {0, . . . , p −1} with |h(ζk )|2 ≥ ‖h‖2

2. Let θ = ζk . Then clearly |h(θ )| ≥ ‖h‖2. We also note that
f (θ ) = h(θ )r and | f (θ )| ≤



 f




1
, since |θ |= 1. Thus,

‖h‖2 ≤ |h(θ )|= | f (θ )|1/r ≤


 f




1/r

1
.

The following corollary is particularly useful.

Corollary 6.10. If f ∈Z[x ] is not of the form x n , and f = hr for some h ∈Z[x ], then

(i) r ≤ 2 log2



 f




1
,

(ii) τ(h)≤


 f




2/r

1
.

Proof. Part (i) follows since ‖h‖2 ≥
p

2. Part (ii) follows because ‖h‖2 ≥
p

τ(h).

These bounds relate to the sparsity of f since


 f




1
≤τ( f )



 f




∞.
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Algorithm 6.3: Perfect power detection over Z
Input: f ∈Z[x ] of degree n and sparsity t ≥ 2, ε∈R>0

Output: true and r if f = hr for some h ∈Z[x ]; false otherwise.
1 P ←{primes r |n and r ≤ 2 log2(t



 f




∞)}
2 for r ∈P do
3 if Algorithm 6.2 returns true on input (f , r , ε/#P ) then return true and r

4 return false

6.2.5 Perfect Power Detection Algorithm

We can now complete the perfect power detection algorithm, when we are given only the
t -sparse polynomial f (and not r ).

Theorem 6.11. If f ∈Z[x ] = hr for some h ∈Z[x ], then Algorithm 6.3 always returns “True” and
returns r correctly with probability at least 1−ε. Otherwise, it returns “False” with probability
at least 1−ε. The algorithm requires O (̃(size( f ))4 · log(1/ε))word operations.

Proof. From the preceding discussions, we can see that if f is a perfect power, then it must be
a perfect r th power for some r ∈P . So the algorithm must return true on some iteration of the
loop. However, it may incorrectly return true too early for an r such that f is not actually an
r th power; the probability of this occurring is the probability of error when f is not a perfect
power, and is less than ε/#P at each iteration. So the probability of error on any iteration is
at most ε, which is what we wanted.

The complexity result follows from the fact that each r ∈O (̃size( f )) and using Corollary
6.8.

We now turn to the case of finite fields. Here we rely on Schinzel’s bound that r ≤ t − 1,
and obtain the following algorithm.

Algorithm 6.4: Perfect power detection over Fq

Input: A prime power q , f ∈Fq [x ] of degree n and sparsity t such that n < char(Fq ),
and ε∈R>0

Output: true and r if f = hr for some h ∈Fq [x ]; false otherwise.
1 P ←{primes r |n and r ≤ t }
2 for p ∈P do
3 if Algorithm 6.1 returns true on input (f , r , ε/#P ) then
4 return true and r

5

6 return false

Theorem 6.12. If f = hr for h ∈ Fq [x ], then Algorithm 6.4 always returns “True” and returns
r correctly with probability at least 1−ε. Otherwise, it returns “False” with probability at least
1−ε. The algorithm requires O (̃t 3(logq + log n )) operations in Fq .
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Proof. The proof is equivalent to that of Theorem 6.11, using the complexity bounds in Corol-
lary 6.4.

6.2.6 Detecting multivariate perfect powers

In this subsection we examine the problem of detecting multivariate perfect powers. That is,
given a lacunary f ∈ F[x1, . . . ,x`] of total degree n as in (6.1), we want to determine if f = hr

for some h ∈ F[x1, . . . ,x`] and r ∈N. This is done simply as a reduction to the univariate case.

First, given f ∈ F[x1, . . . ,x`], define the squarefree part f̃ ∈ F[x1, . . . ,x`] as the squarefree
polynomial of highest total degree which divides f .

Lemma 6.13. Let f ∈ F[x1, . . . ,x`] be of total degree n > 0 and let f̃ ∈ F[x1, . . . ,x`] be the square-
free part of f . Define

∆= discx ( f̃ (y1x , . . . , y`x )) = resx ( f̃ (y1x , . . . , y`x ), f̃ ′(y1x , . . . , y`x ))∈ F[y1, . . . , y`]

and
Λ= lcoeffx ( f (y1x , . . . , y`x ))∈ F[y1, . . . , y`]

for independent indeterminates x , y1, . . . , y`. Assume that a 1, . . . , a ` ∈ F with ∆(a 1, . . . , a `) 6= 0
and Λ(a 1, . . . , a n ) 6= 0. Then f (x1, . . . ,x`) is a perfect power if and only if f (a 1x , . . . , a `x ) ∈ F[x ] is
a perfect power.

Proof. Clearly if f is a perfect power, then f (a 1x , . . . , a `x ) is a perfect power. To prove the
converse, assume that

f = f s1
1 f s2

2 · · · f
sm
m

for irreducible f 1, . . . , f m ∈ F[x1, . . . ,x`]. Then

f (y1x , . . . , ym x ) = f 1(y1x , . . . , ym x )s1 · · · f m (y1x , . . . , ym x )sm

and each of the f i (y1x , . . . , ym x ) are irreducible. Now, since Λ(a 1, . . . , a m ) 6= 0, we know the
deg( f (a 1x , . . . , a `x )) = deg f (the total degree of f ). Thus, deg f i (a 1x , . . . , a `x ) = deg f i for 1 ≤
i ≤ ` as well. Also, by our assumption, disc( f (a 1x , . . . , a `x )) 6= 0, so all of the f i (a 1x , . . . , a `x )
are squarefree and pairwise relatively prime for 1≤ i ≤ k , and

f (a 1x , . . . , a `x ) = f 1(a 1x , . . . , a `x )s1 · · · f m (a 1x , . . . , a `x )sm .

Assume now that f (a 1x , . . . , a `x ) is an r th perfect power. Then r divides s i for 1≤ i ≤m . This
immediately implies that f itself is an r th perfect power.

It is easy to see that the total degree of ∆ is less than 2n 2 and the total degree of Λ is less
than n , and that both ∆ and Λ are non-zero. Thus, for randomly chosen a 1, . . . , a ` from a set
S ⊆ F of size at least 8n 2 + 4n we have ∆(a 1, . . . , a `) = 0 or Λ(a 1, . . . , a `) = 0 with probability
less than 1/4, by the famous Schwartz-Zippel lemma (Demillo and Lipton, 1978; Zippel, 1979;
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Schwartz, 1980). This can be made arbitrarily small by increasing the set size and/or by repe-
tition. We then run the appropriate univariate algorithm over R[x ] (depending upon the ring)
to identify whether or not f is a perfect power, and if so, to find r .

For integer polynomials, f (a 1x , . . . , a `x ) will not be explicitly computed over Z[x ], as the
size of the coefficients in this univariate polynomial could be exponentially larger than the
sparse representation size of f itself. Instead, we pass f (a 1x , . . . , a `x ) unevaluated to Algo-
rithm 6.2, which only performs the computation once a small finite field has been chosen.
This preserves polynomial-time for sparse multivariate integer polynomials.

6.3 Computing perfect roots

Once we have determined that f ∈ F[x ] is equal to hr for some h ∈ F[x ], the next task is to
actually compute h. Unfortunately, as noted in the introduction, there are no known bounds
on τ(h)which are polynomial in τ( f ).

The question of how sparse the polynomial root of a sparse polynomial must be (or equiv-
alently, how dense any power of a dense polynomial must be) relates to some questions first
raised by Erdös (1949) on the number of terms in the square of a polynomial. Schinzel ex-
tended this work to the case of perfect powers and proved that τ(hr ) tends to infinity as τ(h)
tends to infinity (Schinzel, 1987). Some conjectures of Schinzel suggest that τ(h) should be
O(τ( f )). A recent breakthrough of Zannier (2007) shows that τ(h) is bounded by a function
which does not depend on deg f , but this bound is unfortunately not polynomial in τ( f ).

However, our own (limited) investigations, along with more extensive ones by Copper-
smith and Davenport (1991), and later Abbott (2002), suggest that, for any h ∈ F[x ], where
the characteristic of F is not too small, τ(h)∈O(τ(hr )+ r ). The first algorithm presented here
avoids this problem by being output-sensitive. That is, the cost of the algorithm is propor-
tional to τ(h), whatever that might be. We then present different algorithm for this problem
that will be much more efficient in practice, but whose analysis relies on a modest conjecture.

6.3.1 Computing r th roots in output-sensitive polynomial time

In this subsection we present an algorithm for computing an h such that f = hr given f ∈Z[x ]
and r ∈ Z or showing that no such h exists. The algorithm is deterministic and requires time
polynomial in size( f ) as well as a given upper bound µ on m = τ(h). Neither its correctness
nor complexity is conditional on any conjectures. We will only demonstrate that this algo-
rithm requires polynomial time, as the (conjecturally fast) algorithm of the next chapter will
be the obvious choice in practical situations.

The basic idea of the algorithm here is that we can recover all the coefficients in Q as
well as modular information about the exponents of h from a homomorphism into a small
cyclotomic field overQ. Doing this for a relatively small number of cyclotomic fields yields h.

Assume that (the unknown) h ∈Z[x ] is written as

h =b1x d 1 +b2x d 2 + · · ·+bm x d m ,
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for b1, . . . ,bm ∈Z∗, and 0≤ d 1 < d 2 < · · ·< d m ,. Also assume that p > 2 is a prime distinct from
r such that

p -
∏

1≤i<j≤m

(d j −d i ), and p -
∏

1≤i≤m

(d i +1). (6.5)

Let ζp ∈ C be a p th primitive root of unity, and Φp = 1+ z + · · ·+ z p−1 ∈ Z[z ] its minimal
polynomial, the p th cyclotomic polynomial (which is irreducible in Q[z ]). Computationally
we represent Q(ζp ) as Q[z ]/(Φp ), with ζp ≡ z remΦp . Observe that ζk

p = ζ
k rem p
p for any k ∈ Z,

where k rem p is the least non-negative residue of k modulo p . Thus, if we define

hp =
∑

1≤i≤m

b i x d i rem p ∈Z[x ],

then h(ζp ) = hp (ζp ), and hp is the unique representation of h(ζp ) as a polynomial of degree
less than p −1. This follows from the conditions (6.5) on our choice of prime p because

• No pair of distinct exponents d i and d j of h is equivalent modulo p (since p - (d i −d j )),
and

• All the exponents reduced modulo p are strictly less than p − 1 (since our conditions
imply d i 6≡ (p −1)mod p for 1≤ i ≤m ).

This also implies that the coefficients of hp are exactly the same as those of h, albeit in a
different order.

Now observe that we can determine hp quite easily from the roots of

Γp (y ) = y r − f (ζp )∈Q(ζp )[y ].

These roots can be found by factoring the polynomial Γp (y ) in the algebraic extension field
Q(ζp )[y ], and the roots inCmust beωi h(ζp )∈C for 0≤ i < r , whereω is a primitive r th root
of unity. When r > 2hp =

∑

1≤i≤m b i x d i rem p ∈ Z[x ],, and since we chose p distinct from r , the
only r th root of unity inQ(ζp ) is 1. Thus Γp (y ) has exactly one linear factor, and this must be
equal to y −h(ζp ) = y −hp (ζp ), precisely determining hp . When r = 2, we have

Γp (y ) = (y −h(ζp ))(y +h(ζp )) = (y −hp (ζp ))(y +hp (ζp )),

and we can only determine hp (ζp ) (and hp and, for that matter, h) up to a factor of ±1. How-
ever, the exponents of hp and −hp are the same, and the ambiguity is only in the coefficients
(which we resolve later).

Finally, we need to repeatedly perform the above operations for a sequence of cyclotomic
fieldsQ(ζp1),Q(ζp2), . . . ,Q(ζpk ) such that the primes inP = {p1, . . . , pk } allow us to recover all
the exponents in h. Each prime p ∈ P gives the set of exponents of h reduced modulo that
prime, as well as all the coefficients of h in Z. That is, from each of the computations with
p ∈P we obtain

C = {b1, . . . ,bm } and Ep =
�

d 1 rem p , d 2 rem p , . . . , d rem p
	

,
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but with no clear information about the order of these sets. In particular, it is not obvious
how to correlate the exponents modulo the different primes directly. To do this we employ
the clever sparse interpolation technique of (Garg and Schost, 2009) (based on a method of
Grigoriev and Karpinski (1987) for a different problem), which interpolates the symmetric
polynomial in the exponents:

g = (x −d 1)(x −d 2) · · · (x −d m )∈Z[x ].

For each p ∈P we compute the symmetric polynomial modulo p ,

g p = (x − (d 1 rem p ))(x − (d 2 rem p )) · · · (x − (d m rem p ))≡ g (mod p ),

for which we do not need to know the order of the exponent residues. We then determine
g ∈ Z[x ] by the Chinese remainder theorem and factor g over Z[x ] to find the d 1, . . . , d m ∈ Z.
Thus the product of all primes in p ∈P must be at least 2



g




∞ to recover the coefficients of

g uniquely. It is easily seen that 2


g




∞ ≤ 2n m .

As noted above, the computation with each p ∈P recovers all the exponents of h in Z, so
using only one prime p ∈P , we determine the j th exponent of h as the coefficient of x d j rem p

in hp for 1 ≤ j ≤m . If r = 2 we can choose either of the roots of Γp (y ) (they differ by only a
sign) to recover the coefficients of h.

Finally, once we have a candidate root h, we certify that f = hr by taking logarithmic
derivatives to obtain

f ′

f
=

r h ′hr−1

hr
,

which simplifies to f ′h = r h ′ f . This equation only involves two sparse multiplications and is
therefore confirmed in polynomial time, and along with checking leading coefficients implies
that in fact f = hr .

The above discussion is summarized in the following algorithm.

Theorem 6.14. Algorithm 6.5 works as stated. It requires a number of word operations polyno-
mial in size( f ) and µ.

Proof. We assume throughout the proof that there does exist an h ∈Z[x ] such that f = hr and
τ(h)≤µ. If it does not, this will be caught in the test in Steps 22–24 by the above discussion, if
not before.

In Steps 1–2 we construct a set of primes P which is guaranteed to contain sufficiently
many good primes to recover g , where primes are good in the sense that for all p ∈P

β = r ·
∏

1≤i<j≤m

(d j −d i ) ·
∏

1≤i≤m

(d i +1) 6≡ 0 mod p .

It is easily derived that β < nµ2 , which has fewer than log2β ≤µ2 log2 n prime factors, so there
are at most µ2 log2 n bad primes. We also need to recover g in Step 16, and



g




∞ ≤ nµ, for

which we need at least 1+ log2



g


 ≤ 2µ log2 n good primes. Thus if P has at least (µ2 +
2µ) log2 n primes, there are a sufficient number of good primes to reconstruct g in Step 16.
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Algorithm 6.5: Algebraic algorithm for computing perfect roots

Input: f ∈Z[x ] as in (6.2) with deg f = n , and r,µ∈N
Output: h ∈Z[x ] such that f = hr and τ(h)≤µ, provided such an h exists

1 γ← smallest integer ≥ 21 such that 3γ/(5 lnγ)≥ (µ2+2µ) log2 n
2 P ← {p ∈ {γ, . . . , 2γ} and p prime}
3 for p ∈P do
4 RepresentQ(ζp ) byQ[x ]/(Φp ), where Φp ← 1+ z + · · ·+ z p−1 and ζp ≡ z modΦp

5 Compute f (ζp ) =
∑

1≤i≤t c iζ
e i rem p
p ∈Z[ζp ]

6 Factor Γp (y )← y r − f (ζp )∈Q(ζp )[y ] overQ(ζp )[y ]
7 if Γp (y ) has no roots in Z[ζp ] then
8 return “f is not an r th power of a µ-sparse polynomial”

9 Let hp (ζp )∈Z[ζp ] be a root of Γp (y )
10 Write hp (x ) =

∑

1≤i≤mp
b i p x d i p , for b i p ∈Z and distinct d i p ∈N for 1≤ i ≤mp

11 if deg hp = p −1 then
12 mp ← 0; Continue with next prime p ∈P at Step 3

13 g p ← (x −d 1p )(x −d 2p ) · · · (x −d mp p )∈Zp [x ]

14 m ←max{mp : p ∈P }
15 P0←{p ∈P : mp =m }
16 Reconstruct g ∈Z[x ] from {g p}p∈P0 by the Chinese Remainder Algorithm
17 {d 1, d 2, . . . , d k }← distinct integer roots of g
18 if k <m then
19 return “f is not an r th power of a µ-sparse polynomial”

20 Choose any p ∈P0. For 1≤ j ≤m , let b j ∈Z be the coefficient of x d j rem p in hp

21 h←
∑

1≤j≤m b j x d j

22 if f ′h = r h ′ f and lcoeff( f ) = lcoeff(h)r then
23 return h

24 else
25 return “f is not an r th power of a µ-sparse polynomial”
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By (Rosser and Schoenfeld, 1962), Corollary 3, for γ ≥ 21 we have that the number of
primes in {γ, . . . , 2γ} is at least 3γ/(5 lnγ), which is at least (µ2 + 2µ) log2 n by our choice of
γ in Step 1, and γ∈O (̃µ2 log(n )). Numbers of this size can easily be tested for primality.

Since we assume that a root h exists, Γp (y ) will always have exactly one root hp ∈ Z[ζp ]
when r > 2, and exactly two roots in Z[ζp ]when r = 2 (differing only by sign).

Two conditions cause the primes to be identified as bad. If the map h 7→ h(ζp ) causes some
exponents of h to collide modulo p , this can only reduce the number of non-zero exponents
mp in hp , and so such primes will not show up in the list of good primes P0, as selected in
Step 15. Also, if any of the exponents of h are equivalent to p − 1 modulo p we will not be
able to reconstruct the exponents of h from hp , and we identify these as bad in Step 12 (by
artificially marking mp = 0, which ensures they will not be added toP0).

Correctness of the remainder of the algorithm follows from the previous discussion.

The complexity is clearly polynomial for all steps except for factoring inQ(ζp )[y ] (Step 6).
It is well-established that factoring dense polynomials over algebraic extensions can be done
in polynomial time, for example using the algorithm of Landau (1985).

As stated, Algorithm 6.5 is not actually output-sensitive, as it requires an a priori bound µ
onτ(h). To avoid this, we could start with any small value forµ, sayτ( f ), and after each failure
double this bound. Provided that the input polynomial f is in fact an r th perfect power, this
process with terminate after a number of steps polynomial in the sparse size of the output
polynomial h. There are also a number of other small improvements that could be made to
increase the algorithm’s efficiency, which we have omitted here for clarity.

6.3.2 Faster root computation subject to conjecture

Algorithm 6.5 is output sensitive as the cost depends on the sparsity of the root h. As discussed
above, there is considerable evidence that, roughly speaking, the root of a sparse polynomial
must always be sparse, and so the preceding algorithm may be unconditionally polynomial-
time.

In fact, with suitable sparsity bounds we can derive a more efficient algorithm based on
Newton iteration. This approach is simpler as it does not rely on advanced techniques such
as factoring over algebraic extension fields. It is also more general as it applies to fields other
than Z and to powers r which are not prime.

Unfortunately, this algorithm is not purely output-sensitive, as it relies on a conjecture
regarding the sparsity of powers of h. We first present the algorithm and prove its correctness.
Then we give our modest conjecture and use it to prove the algorithm’s efficiency.

Our algorithm is essentially a Newton iteration, with special care taken to preserve spar-
sity. We start with the image of h modulo x , using the fact that f (0) = h(0)r , and at Step
i = 1, 2, . . . , dlog2(deg h +1)e, we compute the image of h modulo x i .

Here, and for the remainder of this section, we will assume that f , h ∈ F[x ]with degrees n
and s respectively such that f = hr for r ∈N at least 2, and that the characteristic of F is either
zero or greater than n . As usual, we define t =τ( f ).
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Algorithm 6.6: Sparsity-sensitive Newton iteration to compute perfect roots

Input: f ∈ F[x ], r ∈N such that f is a perfect r th power
Output: h ∈ F[x ] such that f = hr

1 u ← highest power of x dividing f
2 f u ← coefficient of x u in f
3 g ← f /( f u x u )
4 h← 1, k ← 1
5 while k r ≤ deg g do
6 `←min{k , (deg g )/r +1−k }

7 a ←
(h g −hr+1)remx k+`

r x k

8 h← h +(a/g mod x `) ·x k

9 k ← k + `

10 b ← any r th root of f u in F
11 return b hx u /r

Theorem 6.15. If f ∈ F[x ] is a perfect r th power, then 6.6 returns an h ∈ F[x ] such that hr = f .

Proof. Let u , f u , g be as defined in Steps 1–3. Thus f = f u g x u . Now let ĥ be some r th root of
f , which we assume exists. If we similarly write ĥ = ĥv ĝ x v , with ĥv ∈ F and ĝ ∈ F[x ] such that
ĝ (0) = 1, then ĥr = ĥ r

v ĝ r x v r . Therefore f u must be a perfect r th power in F, r |u , and g is a
perfect r th power in F[x ] of some polynomial with constant coefficient equal to 1.

Denote by h i the value of h at the beginning of the i th iteration of the while loop. So
h1 = 1. We claim that at each iteration through Step 6, hr

i ≡ g mod x k . From the discussion
above, this holds for i = 1. Assuming the claim holds for all i = 1, 2, . . . , j , we prove it also holds
for i = j +1.

From Step 8, h j+1 = h j +(a/g mod x l )x k , where a is as defined on the j th iteration of Step
7. We observe that

h j hr
j ≡ hr+1

j + r hr
j (a/g mod x l )x k (mod x k+`).

From our assumption, hr
j ≡ f mod x k , and l ≤ k , so we have

h j hr
j+1 ≡ hr+1

j + r a x k ≡ hr+1
j +h j f −hr+1

j ≡ h j f (mod x k+`).

Therefore hr
j+1 ≡ f mod x k+`, and so by induction the claim holds at each step. Since the

algorithm terminates when k r > deg g , we can see that the final value of h is an r th root of g .
Finally,

�

b hx u /r
�r = f u g x u = f .

Algorithm 6.6 will only be efficient if the low-order terms of the polynomial power hr−1

can be efficiently computed on Step 7. Since we know that h and the low-order terms of hr−1

are sparse, we need only a guarantee that the intermediate powers will be sparse as well. This
is stated in the following modest conjecture.
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Conjecture 6.16. For r, s ∈ N, if the characteristic of F is zero or greater than r s , and h ∈ F[x ]
with deg h = s , then

τ(h i mod x 2s )<τ(hr mod x 2s )+ r, i = 1, 2, . . . , r −1.

This corresponds to intuition and experience, as the system is still overly constrained with
only s degrees of freedom. Computationally, the conjecture has also been confirmed for all
of the numerous examples we have tested, and for the special case of r = 2 and s ≤ 12 by
Abbott (2002), although a more thorough investigation of its truth would be interesting. A
weaker inequality would suffice to prove polynomial time, but we use the stated bounds as
we believe these give more accurate complexity measures.

The application of Conjecture 6.16 to Algorithm 6.6 is given by the following lemma, which
essentially tells us that the “error” introduced by examining higher-order terms of hr

1 is not too
dense.

Lemma 6.17.2 Let k ,` ∈N such that `≤ k and k + `≤ s , and suppose h1 ∈ F[x ] is the unique
polynomial with degree less than k satisfying hr

1 ≡ f mod x k . Then

τ(hr+1
l mod x k+`)≤ 2t (t + r ).

Proof. Let h2 ∈ F[x ] be the unique polynomial of degree less than ` satisfying h1 + h2x k ≡
h mod x k+`. Since hr = f ,

f ≡ hr
1+ r hr−1

1 h2x k mod x k+`.

Multiplying by h1 and rearranging gives

hr+1
1 ≡ h1 f − r f h2x k mod x k+`.

Because h1 mod x k and h2 mod x ` each have at most τ(h) terms, which by Conjecture 6.16 is
less than t − r , the total number of terms in hr−1

1 mod x k+` is less than 2t (t − r ).

We are now ready to prove the efficiency of the algorithm, assuming the conjecture.

Theorem 6.18.2 If f ∈ F[x ] has degree n and t nonzero terms, then Algorithm 6.6 uses

O
�

(t + r )4 log r log n
�

operations in F and an additional O
�

(t + r )4 · size(r ) · log2 n
�

word operations, not counting
the cost of root-finding in the base field F on Step 10.

Proof. First consider the cost of computing hr+1 in Step 7. This will be accomplished by re-
peatedly squaring and multiplying by h, for a total of at most 2blog2(r +1)cmultiplications. As
well, each intermediate product will have at most τ( f )+r < (t +r )2 terms, by Conjecture 6.16.
The number of field operations required, at each iteration, is O

�

(t + r )4 log r
�

, for a total cost
of O

�

(t + r )4 log r log n
�

.

2Subject to the validity of Conjecture 6.16.
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Furthermore, since k + ` ≤ 2i at the i ’th step, for 1 ≤ i < log2 n , the total cost in word
operations is less than

∑

1≤i<log2 n

(t + r )4 · size(r i )∈O
�

(t + r )4 size(r ) log2 n
�

.

In fact, this is the most costly step. The initialization in Steps 1–3 uses only O(t ) operations
in F and on integers at most n . And the cost of computing the quotient on Step 8 is propor-
tional to the cost of multiplying the quotient and dividend, which is at most O(t (t + r )).

When F = Q, we must account for coefficient growth. Observe that the difference in the
number of word operations on an IMM and the number of bit operations for the same algo-
rithm is at most a factor of the word size w . From the definition of an IMM, we know that this
is logarithmic in the size of the input, and therefore does not affect the O (̃· · · ) complexity.

So for ease of presentation, and in particular in order to make use of Theorem 6.9, we
will count the cost of the computation in bit complexity. First we define the height of a poly-
nomial in terms of bit length: For α ∈ Q, write α = a/b for a ,b relatively prime integers.
Then define H (α) = max{|a |, |b |}. And for f ∈ Q[x ] with coefficients c1, . . . , c t ∈ Q, write
H ( f ) =maxH (c i ).

Thus, the size of the lacunary representation of f ∈Q[x ] is proportional to τ( f ), deg f , and
logH ( f ). Now we prove the complexity of our algorithm is polynomial in these values, when
F=Q.

Theorem 6.19.2 Suppose f ∈Q[x ]has degree n and t nonzero terms, and is a perfect r th power.
Algorithm 6.6 computes an r th root of f using O˜

�

t (t + r )4 · log n · logH ( f )
�

bit operations.

Proof. Let h ∈Q[x ] such that hr = f , and let c ∈ Z>0 be minimal such that c h ∈ Z[x ]. Gauß’s
Lemma tells us that c r must be the least positive integer such that c r f ∈ Z[x ] as well. Then,
using Theorem 6.9, we have:

H (h)≤ ‖c h‖∞ ≤ ‖c h‖2 ≤ (t


c r f




∞)
1/r ≤ t 1/rH ( f )(t+1)/r .

(The last inequality comes from the fact that the lcm of the denominators of f is at most
H ( f )t .)

Hence logH (h)∈O
�

(t logH ( f ))/r
�

. Clearly the most costly step in the algorithm will still
be the computation of hr+1

i at each iteration through Step 7. For simplicity in our analysis, we
can just treat h i (the value of h at the i th iteration of the while loop in our algorithm) as equal
to h (the actual root of f ), since we know τ(h i )≤τ(h) andH (h i )≤H (h).

Lemma 6.17 and Conjecture 6.16 tell us that τ(h i )≤ 2(t + r )2 for i = 1, 2, . . . , r . To compute
hr+1, we will actually compute (c h)r+1 ∈ Z[x ] by repeatedly squaring and multiplying by c h,
and then divide out c r+1. This requires at most blog2 r +1c squares and products.

2Subject to the validity of Conjecture 6.16.
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Note that


(c h)2i




∞ ≤ (t +r )2


(c h)i




2

∞ and


(c h)i+1




∞ ≤ (t +r )2


(c h)i




∞ ‖c h‖∞. Therefore



(c h)i




∞ ≤ (t + r )2r ‖c h‖r
∞ , i = 1, 2, . . . , r,

and thus log


(c h)i




∞ ∈O
�

r (t + r )+ t logH ( f )
�

, for each intermediate power (c h)i .

Thus each of the O
�

(t + r )4 log r
�

field operations at each iteration costs O(M(t logH ( f )+
log r (t + r ))) bit operations, which then gives the stated result.

Again, observe that the bit complexity in general is an upper bound on the number of IMM
operations, and when we use the blunt measure of O (̃· · · ) notation, the costs are exactly the
same.

The method used for Step 10 depends on the field F. For F =Q, we just need to find two
integer perfect roots, which can be done in “nearly linear” time by the algorithm of (Bernstein,
1998). Otherwise, we can use any of the well-known fast root-finding methods over F[x ] to
compute a root of x r − f u .

6.3.3 Computing multivariate roots

For the problem of computing perfect polynomial roots of multivariate polynomials, we again
reduce the problem to a univariate one, this time employing the well-known Kronecker sub-
stitution method.

Suppose f , h ∈ F[x1, . . . ,x`] and r ∈ N such that f = hr . It is easily seen that each partial
degree of f is exactly r times the corresponding partial degree in h, that is, degx i

f = r degx i
h,

for all r ∈ {1, . . . ,`}.

Now suppose f and r are given and we wish to compute h. First use the relations above
to compute d i = degx i

h +1 for each i ∈ {1, . . . ,`}. (If any degx i
f i is not a multiple of r , then f

must not be an r th power.)

Now use the Kronecker substitution and define

f̂ = f
�

y , y d 1 , y d 1d 2 , . . . , y d 1···d `−1
�

and ĥ = h
�

y , y d 1 , y d 1d 2 , . . . , y d 1···d `−1
�

,

where y is a new variable. Clearly f̂ = ĥr , and since each d i > degx i
h, h is easily recov-

ered from the sparse representation of ĥ in the standard way: For each non-zero term c y e in
ĥ, compute the digits of e in the mixed radix representation corresponding to the sequence
d 1, d 2, . . . , d `−1. That is, decompose e (uniquely) as e = e1+ e2d 1+ e3d 1d 2+ · · ·+ e`d 1 · · ·d `−1

with each e i ∈N such that e i < d i . Then the corresponding term in h is c x e1
1 · · ·x

e`
` .

Therefore we simply use either algorithm above to compute ĥ as the r th root of f̂ over
F[y ], then invert the Kronecker map to obtain h ∈ F[x1, . . . ,x`]. The conversion steps are
clearly polynomial-time, and notice that log deg f̂ is at most ` times larger than log deg f .
Therefore the lacunary sizes of f̂ and ĥ are polynomial in the lacunary sizes of f and h, and
the algorithms in this section yield polynomial-time algorithms to compute perfect r th roots
of multivariate lacunary polynomials.
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6.4 Implementation

To investigate the practicality of our algorithms, we implemented Algorithm 6.3 using NTL
(Shoup, 2009), for dense univariate polynomials with arbitrary-precision integers as their co-
efficients. The only significant difference between our implementation and the algorithm
specified above is our choice of the ground field. Rather than working in a degree-(r − 1) ex-
tension of Fp , we simply find a random p in the same range such that (r − 1) | p . Proving
good complexity bounds is more difficult in this situation, as it requires bounds on primes
in arithmetic progressions. That issue in particular will be discussed much more thoroughly
in Chapter 8, but for now we simply point out that this is extremely efficient in practice, as it
avoids working in extension fields.

To our knowledge, all existing algorithms which could be used to test for perfect powers
actually compute the root h. We implemented the fastest method for densely-represented
polynomials, both in theory and in practice, which is a standard Newton iteration. This algo-
rithm uses dense polynomial arithmetic in its implementation, and also requires the power
r to be given explicitly. This Newton iteration method is adapted to the case when r is not
known by simply trying all possible powers r , and then checking with a single evaluation
whether the computed candidate h is actually an r th root of f . This technique is not provably
correct, but in all of our trials it has never failed. Furthermore, since this is the algorithm we
are comparing against, we graciously give it every possible advantage.

The results of these experiments were reported in (Giesbrecht and Roche, 2008). We found
that, when the given polynomial f was not a perfect power, our algorithm detected this ex-
tremely quickly, in fact always with just one random evaluation. Even when the inputs had
mostly nonzero coefficients, we found that our algorithm performed competitively with the
dense Newton iteration approach. This is due to the black-box nature of the algorithm — it
requires only a way to quickly evaluate a polynomial at a given point, which is of course pos-
sible whether the polynomial is sparsely or densely represented. Much more on the black box
representation and what other kinds of information can be learned from it will be discussed
in the next two chapters.

6.5 Conclusions

Given a sparse polynomial over the integers, rational numbers, or a finite field, we have shown
polynomial-time Monte Carlo algorithms to determine whether the polynomial is a perfect
r th power for any r ≥ 2. In every case, the error is one-sided, i.e., the algorithm may produce
false positives but never true negatives. Therefore we have shown that these problems are in
the complexity class coRP.

Actually computing h such that f = hr is a somewhat trickier problem, at least insofar
as bounds on the sparsity of h have not been completely resolved. We presented an output-
sensitive algorithm that makes use of factorization over algebraic extension fields, and also a
conjecturally-fast sparse Newton iteration.
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There are many interesting potential connections from our algorithms to other related
problems. First, polynomial perfect powers are a special case of the functional decomposition
problem. Given a polynomial f ∈ R[x ], the univariate version of this problem asks for a pair
of polynomials g , h ∈ R[x ] such that f (x ) = g (h(x )). This connection is made more explicit
in our discussion of Algorithm 6.6 in the next chapter. For now, it suffices to say that it is not
known whether decomposition can be solved in polynomial time for sparse polynomials.

Perfect powers are also a special case of factorization. As mentioned in the beginning of
this chapter, existing algorithms for factorization of sparse polynomials, for example those
by Lenstra (1999); Kaltofen and Koiran (2006), require polynomial-time in the degree of the
computed factors. Because the degree of a sparse polynomial can be exponential in the sparse
representation size, this precludes the computation of high-degree factors which have few
nonzero terms. The combination of Algorithms 6.3 and 6.5 gives the first polynomial-time
algorithm to compute any sparse, high-degree factors of a sparse polynomial. A rich topic of
further investigation would be the development of further algorithms of this type, with the
ultimate goal being an either an algorithm to compute all t -sparse factors in t O(1) time, or a
reduction showing the general problem to be intractable.
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