
This little polynomial should keep the computer so busy it doesn’t
even know we’re here.

—Chris Knight (Val Kilmer), Real Genius (1985)

Chapter 1

Introduction

This thesis presents new algorithms for computations with polynomials. Such computa-
tions form the basis of some of the most important problems in computational mathematics,
from factorization to solving nonlinear systems. We seek algorithms that give improvements
both in theoretical efficiency as well as practical performance. As the operations we consider
are important subroutines in a range of applications, our low-level performance gains will
produce improvements in a variety of problems.

A primary focus of this work is the issue of how polynomials are represented in memory.
Polynomials have traditionally been stored in the dense representation as an array of coeffi-
cients, allowing efficient computations with polynomials such as

f = x 5−2x 4+8x 3+3x 2−x +9.

By contrast, the sparse representation of a polynomial is a list of nonzero coefficient-exponent
tuples, a much more efficient representation when most of the coefficients are zero. This
allows compact storage of a much larger set of polynomials, for instance

f = x 5000−3x 4483−10x 2853+4x 21.

The types of polynomial computations we will examine fall into three general categories:
basic arithmetic operations, algebraic problems, and inverse symbolic computations.

Basic arithmetic includes operations such as addition, subtraction, multiplication, and
division. Optimal, linear-time algorithms for addition and subtraction of polynomials (in any
representation) are easily derived. Division, modular reduction, and a great many other op-
erations on densely-represented polynomials have been reduced to the cost of multiplication
(sometimes with extra logarithmic factors). In fact, almost any nontrivial computation with
polynomials in any representation uses multiplication as a subroutine. Hence multiplication
emerges as the most crucial low-level arithmetic operation to consider.

1

CHAPTER 1. INTRODUCTION

At a slightly higher level, understanding the basic algebraic structure of polynomials is
important for many applications in symbolic computation as well as cryptography. The fast
algorithms that have been developed for polynomial factorization have been identified as
some of the greatest successes of computer algebra. However, these algorithms are only effi-
cient when the polynomials under consideration are represented densely. Many polynomials
that arise in practice can only be feasibly stored using the sparse representation, but this more
compact representation demands more sophisticated algorithms. Understanding the effects
of sparsity on computational efficiency is fascinating theoretical work with important practi-
cal consequences.

The arithmetic and algebraic computations above involve manipulating and computing
with symbolic representations of mathematical objects. Said mathematical objects are often
not known explicitly, but rather given implicitly by a function or program that can be evalu-
ated at any chosen point. Inverse symbolic problems involve computing a symbolic formula
for a sampled function. Sparse polynomial interpolation in particular has a rich history as
well as important applications in factorization and nonlinear system solving.

Kaltofen (2010) has recently proposed a taxonomy of the most significant mid-level and
high-performance computational tasks for exact mathematical computing, called the “seven
dwarfs” of symbolic computation. In terms of this classification, the current work falls under
the categories of the second and third dwarfs, exact polynomial algebra and inverse symbolic
problems. We will also briefly touch on the fifth dwarf, hybrid symbolic-numeric computa-
tion.

1.1 Overview

The remaining sections of this chapter introduce the basic concepts and definitions that will
be used for the remainder of the thesis. Our computational model has a carefully defined
memory layout and counts machine word operations as well as arithmetic operations over an
arbitrary algebraic domain. We show the implications of this model for the important basic
operation of integer multiplication.

Chapter 2 follows by discussing the architecture and design of a high-performance C++
library containing all the algorithm implementations that we will present. This library is used
to benchmark our algorithms against previous approaches and show how the theoretical im-
provements correspond to concrete practical gains.

The first algorithmic problem we turn to is also the most fundamental: multiplication of
dense univariate polynomials. Chapter 3 examines the problem of computing the so-called
Truncated Fourier Transform (TFT), which among other applications is used as a subroutine
in fast polynomial multiplication. While the normal radix-2 Fast Fourier Transform (FFT)
can be computed completely in-place, i.e., overwriting the input with the output, the TFT as
originally developed by van der Hoeven (2004) requires linear extra space in the general case.
Our new algorithm for an in-place TFT overcomes this shortcoming without sacrificing time
cost.

The in-place TFT algorithm is used as a subroutine in one of two new algorithms for dense
polynomial multiplication presented in Chapter 4. These new algorithms have the same time

2

CHAPTER 1. INTRODUCTION

complexity as the two most commonly used sub-quadratic “fast” algorithms for multiplica-
tion, but improve on the linear amount of extra space previously required. Our first algorithm
works over any ring, matches the O(n 1.59) time complexity of Karatsuba’s algorithm, and only
uses O(log n) extra space. The second algorithm works in any ring that admits radix-2 FFTs
and matches the O(n log n) time cost of usual FFT-based multiplication over such rings, but
uses only O(1) extra storage space. Under our model of space cost, these are the first algo-
rithms to achieve sub-quadratic time × space complexity for multiplication.

Next we turn to a broader view of polynomial multiplication, encompassing both dense
and sparse polynomial multiplication. Two new approaches to this problem are presented in
Chapter 5 which effectively provide a gradient between existing sparse and dense methods.
Specifically, the algorithms adapt to the case of dense “chunks” of nonzero coefficients in an
otherwise sparse polynomial, and to the opposite case of sparse polynomials in which the
nonzero terms are mostly evenly spaced. These algorithms provide advantages over previous
techniques by being more adaptive to the structure of the input polynomials, giving signifi-
cant improvement in many cases while never being more than a constant factor more costly
than any existing approach. We also show how to combine the two approaches into one algo-
rithm that simultaneously achieves both benefits.

Chapter 6 examines an important algebraic problem for sparse polynomials. Given a
sparse polynomial as input, we investigate how to determine whether it is a perfect power
of another (unknown) polynomial, and if so, to compute this unknown polynomial root. Per-
fect powers are a special case of both polynomial factorization and decomposition, and fast
algorithms for the problem are known when the input is given in the dense representation.
We give the first polynomial-time algorithms for detecting sparse polynomial perfect powers,
which are randomized of the Monte Carlo type, and work when the coefficients are rational
numbers or elements of a finite field with sufficiently large characteristic. We then turn to the
problem of actually computing the unknown polynomial root, and give two approaches to
that problem. The first is output-sensitive and provably polynomial-time, while the second is
much more efficient in practice but relies on a conjecture regarding the sparsity of interme-
diate results.

The third broad topic of this thesis is sparse polynomial interpolation. Chapter 7 gives a
brief overview of existing algorithms for sparse interpolation over various domains. We show
how to improve the polynomial-time complexity of the recent algorithm of Garg and Schost
(2009) over sufficiently large finite fields. We also present a related algorithm for approximate
sparse interpolation, where the coefficients are approximations to complex numbers, and
show that our algorithm improves the numerical stability over existing approaches.

Building on these sparse interpolation algorithms, in Chapter 8 we extend their domain
by presenting the first polynomial-time algorithm for the problem of sparsest-shift interpola-
tion. This problem seeks a representation of the unknown sampled polynomial in the shifted
power basis 1, (x −α), (x −α)2, . . ., with α chosen to minimize the size of the representation,
rather than the usual power basis 1,x ,x 2, By first computing this sparsest shift α and then
performing interpolation in that basis, we greatly expand the class of polynomials that can be
efficiently interpolated.

3

CHAPTER 1. INTRODUCTION

1.2 Polynomials and representations

The issue of polynomial representations is of central importance to much of this thesis. We
therefore pause to consider what a polynomial is and how one might be stored in a digital
computer.

First, we define some standard notation that we will use throughout. Big-O notation,
which has become standard in algorithmic analysis, is a convenient way to compare the
asymptotic behavior of functions. Unfortunately, the notation itself can be somewhat mis-
leading in certain situations, so we give a formal definition.

Given two k -variate functions f , g : Nk → R≥0, we say that f (n 1, . . . , n k) ∈O(g (n 1, . . . , n k))
if there exist constants N and c such that, whenever n i ≥N for every 1≤ i ≤ k , we have that
f (n 1, . . . , n k) ≤ c g (n 1, . . . , n k). This is really defining a partial order on functions, but we can
also think of O(g (n 1, . . . , n k)) as defining a set of all k -variate functions f which satisfy the
above conditions, and our notation follows the latter convention.

In most cases, the k variables n 1, . . . , n k will appear explicitly in g (n 1, . . . , n k), but when
they do not, or when other symbols appear that are not variables, these distinctions must un-
fortunately be inferred from the context. An important example is O(1), which in the current
context represents all k -variate functions bounded above by a constant.

The notations Ω, Θ, o, and ω can all be derived from the definition of O in the standard
ways, and we will not list them here. Another common notation which we will use occasion-
ally is soft-O notation: f (n 1, . . . , n k)∈O (̃g (n 1, . . . , n k)) if and only if

f (n 1, . . . , n k)∈O
�

g (n 1, . . . , n k) ·
�

log g (n 1, . . . , n k)
�c
�

,

for some positive constant c . Informally, soft-O notation means ignoring logarithmic fac-
tors of polynomial terms. Note for example that the univariate function log n · loglog n is in
O (̃log n) but not O (̃1).

1.2.1 Functional representation

Consider a ring R (commutative, with identity) with binary operations ×,+,−, and a posi-
tive integer n . If only these three operations are allowed, say on a computer, then the set
R[x1,x2, . . . ,xn] of n-variate polynomials is exactly the set of all computable functions on n
inputs. For instance, in a very simple view of modern digital computers operating directly
(and exclusively) on bits, every possible computation corresponds to a multivariate polyno-
mial over F2, the finite field with two elements.

With this fundamental connection between polynomials and computation in mind, we
begin with a functional definition of the set R[x1,x2, . . . ,xn] of n-variate polynomials, and will
get to the more common algebraic definition later. Functionally, an n-variate polynomial f
is simply a finite sequence of ring operations on a set of n indeterminates x1,x2, . . . ,xn . This
function can be represented by a so-called straight line program or, somewhat more expres-
sively, by a division-free algebraic circuit.

4

CHAPTER 1. INTRODUCTION

x1 x2 x3

+ × +

×

−2
53

−1

Figure 1.1: Algebraic circuit for (−2x1+3x3) · (x1 ·x2) · (5x1−x3)

For our purposes, such a circuit will be a directed acyclic graph with n source nodes la-
beled x1 through xn and a single sink node for the output. Each node is labeled with + or
×. Incoming edges to each + node are also labeled with constant elements from R, and the
value computed at that node is the R-linear combination of the values at its direct predeces-
sors, times the values on the incoming edges. The value at each × node is simply the product
of the values of its direct predecessor nodes. For instance, the algebraic circuit in Figure 1.1
represents the function

f (x1,x2,x3) = (−2x1+3x3) · (x1 ·x2) · (5x1−x3).

Computations on polynomials represented by algebraic circuits or straight-line programs
have been studied extensively (Freeman, Imirzian, Kaltofen, and Yagati, 1988; Kaltofen, 1989;
Kaltofen and Trager, 1990; Encarnación, 1997), and the main advantages of this representa-
tion are its potential for conciseness and connection to evaluation. Unfortunately, with the
important exception of computing derivatives (Baur and Strassen, 1983), very few operations
can be efficiently computed in polynomial-time in this representation. Even the most basic
operation, determining whether two circuits represent the same polynomial, is notoriously
difficult to solve, at least without randomization (Saxena, 2009). Because of these difficul-
ties, many algorithms parameterize their cost based on some algebraic property of the poly-
nomial(s) computed by the circuit. For instance, the best-known factorization algorithm by
Kaltofen requires polynomial time in the degree, which could be exponentially larger than the
circuit size.

5

CHAPTER 1. INTRODUCTION

1.2.2 Algebraic representations

A more typical way to represent polynomials is algebraically, as an R-linear combination of
monomials in some chosen basis. The most common choice is the standard power basis,
wherein each monomial is a product of the indeterminates, each raised to a nonnegative inte-
ger power. (Chapter 8 will consider an important alternate basis, namely the sparsest-shifted
power basis.)

We now pause briefly to define some useful terminology. Each product of a monomial
and a coefficient is called a term. We will typically focus on nonzero terms, i.e., terms with
a nonzero coefficient, and we will implicitly assume that each monomial appears at most
once. The highest exponent of a given indeterminate x i in any nonzero term is called the
partial degree in x i . The greatest partial degree is called the max degree. The greatest sum of
exponents in any nonzero term is called the total degree. The number of (distinct) nonzero
terms is called the sparsity of the polynomial, and the monomials with nonzero coefficients
make up its support.

For instance, the polynomial represented by the circuit in Figure 1.1 can be written al-
gebraically, in the standard power basis, as f = −3x1x2x 2

3 + 17x 2
1x2x3 − 10x 3

1x2. It has three
nonzero terms, max degree 3, and total degree 4.

The question remains how to actually represent such expressions in a computer. We will
briefly discuss the three most common representations, and refer to (Stoutemyer, 1984; Fate-
man, 2002) for a more in-depth comparison. The most straightforward choice is a multidi-
mensional d 1 × d 2 × · · · × d n array of coefficients, where each d i is greater than the partial
degree in x i . This we term the dense representation; its size is bounded by O(d 1d 2 · · ·d n) ring
elements, or more simply as O(d n), where d is the max degree. The dense representation typ-
ically admits very fast algorithms, but can be inefficient when the number of nonzero terms
in the polynomial is very small compared to d n .

More compact storage is afforded by the so-called recursive dense representation. The zero
polynomial is represented as a null pointer; otherwise, terms are collected by the last variable
and the representation is by a single length-d n array of recursive dense polynomials in n − 1
variables x1,x2, . . . ,xn−1. This representation has proven to be practically useful in a number of
situations, as it admits the use of dense univariate algorithms while being somewhat sensitive
to sparsity. A major drawback is its high sensitivity to the variable ordering. Despite this,
it is easy to see the size in the worst case is at most O(d nt) ring elements, where t is the
sparsity, i.e., number of nonzero terms. Since t could be at most (d + 1)n , this would seem
to be potentially worse than the dense representation in cases where almost every term is
nonzero, but this is not actually true; a better bound on the number of ring elements required
for the recursive dense representation of O(min(d n , d nt)) is also easy to derive.

The most compact algebraic representation is the sparse representation (also called the
distributed sparse representation). In this representation, a polynomial is stored as a list of
coefficient-exponent tuples, wherein nonzero terms never need to be explicitly stored. This
also corresponds exactly to the way we naturally write polynomials when doing mathematics,
and for this reason it has become the standard and default representation in general-purpose
computer algebra systems such as Maple, Mathematica, and Sage. This representation always

6

CHAPTER 1. INTRODUCTION

uses exactly t ring elements for storage. However, in this case we also must take into account
storage space for the potentially large exponents. This exponent storage is bounded above by
O(nt log d) bits.

Observe that there is potentially an exponential-size gap between the size of each of these
representations. For instance, assuming elements 0 and 1 in R are stored with a constant
number of bits, the size of the polynomial f = x d

1 x d
2 · · ·x d

n in each of the dense, recursive dense,
and sparse representations is Θ((d +1)n), Θ((d +1)n), and Θ(n log d) bits, respectively.

1.2.3 Algorithms

Most published algorithms for polynomial computation do not explicitly discuss what repre-
sentation they have in mind, but nonetheless we can roughly categorize them based on those
representations mentioned above.

Generally, algorithms in the literature that make no mention of sparsity and whose cost
does not explicitly depend on t we will term dense algorithms. These algorithms are said to
be polynomial-time if their cost is (n d)O(1), i.e., polynomial in the size of the dense represen-
tation. Many important classical results in computer algebra fall into this class, including fast
multiplication algorithms (Karatsuba and Ofman, 1963; Schönhage and Strassen, 1971; Can-
tor and Kaltofen, 1991) and polynomial factorization (Berlekamp, 1967; Cantor and Zassen-
haus, 1981).

Some algorithms for so-called sparse polynomial computation have complexity (nd t)O(1).
Observe that this is polynomial-time in the size of the recursive dense representation. Richard
Zippel’s sparse interpolation algorithms (1979; 1990) are good examples of algorithms with
this sort of cost. Algorithms for straight-line programs whose cost depends partially on the
degree (e.g., Kaltofen and Trager, 1990) could also be considered of this type, as one can easily
construct a small circuit for evaluating a sparse polynomial.

The most difficult algorithms to derive are those whose cost is polynomial in the size of
the sparse representation defined above. These go by many names in the literature: “sparse”
(e.g., Johnson, 1974), “lacunary” (e.g., Lenstra, 1999), and “supersparse” (e.g., Kaltofen and
Koiran, 2005). To avoid any ambiguity, we will call any algorithm whose cost is polynomial
in the size of the sparse representation — that is, polynomial in n , t , and log d — a lacunary
algorithm. Observe that efficient lacunary algorithms automatically give efficient algorithms
for all three algebraic representations mentioned above; the blow-up in complexity from a la-
cunary algorithm to a dense one is at most O(n log d). Lacunary algorithms also have advan-
tages related to the univariate case, as we will discuss shortly. However, despite the ubiquity
of the sparse representation in computer algebra systems, the development of lacunary algo-
rithms has been much less rapid than dense algorithms; see Davenport and Carette (2009) for
an overview of some of the specific algorithmic challenges that accompany the sparse repre-
sentation.

Another class of algorithms we will occasionally consider are those whose cost depends
even more strongly on one of the parameters, such as the sparsity t or the size of coeffi-
cients. These algorithms are polynomial-time in special cases, for instance when the number

7

CHAPTER 1. INTRODUCTION

of terms or size of coefficients is constant, as in the recent examples by Filaseta, Granville, and
Schinzel (2008) and Pébay, Rojas, and Thompson (2010) on computing gcds and extrema, re-
spectively. However, observe that these are exponential-time algorithms no matter the choice
of representation.

1.2.4 Univariate polynomials

Univariate polynomials are an important special case for consideration. Algorithms are of
course easier to develop, describe, and implement in this case. But univariate polynomials
also arise frequently in practice and have a strong relationship with multiple-precision inte-
gers. For instance, algorithms for fast multiplication of dense univariate polynomials have
typically followed those for multiple-precision integers with the same complexity.

Observe that in the univariate case the recursive dense representation degenerates to the
dense representation and hence becomes useless. So for univariate problems we need only
consider two types of algebraic representations.

Fast algorithms for univariate polynomial computation can be applied to multivariate
polynomials via the well-known Kronecker substitution:

Fact 1.1. (Kronecker, 1882) Let R be a ring and n , d 1, d 2, . . . , d n ∈ N, For any polynomial f ∈
R[x] with degree less than d 1d 2 · · ·d n , there exists a unique polynomial f̂ ∈ R[x1,x2, . . . ,xn],
with partial degrees less than d 1, d 2, . . . , d n respectively, such that

f (x) = f̂ (x ,x d 1 ,x d 1d 2 , . . . ,x d 1d 2···d n−1).

For many problems with multivariate polynomials, making this substitution (evaluating
at high powers of a single variable) often allows the use of univariate algorithms. For instance,
given the bivariate polynomial

f̂ (x , y) = 5+6x 2y −3x y 10,

we could compute f̂ 2 by using the Kronecker substitution with bounds on the degrees in f̂ 2:

f (x) = f̂ (x ,x 5) = 5+6x 7−3x 51.

We see that
f 2 = 25+60x 7+36x 14−30x 51−36x 58+9x 102,

and because we know that degx f̂ 2 < 5, we can then apply Fact 1.1 to write down the coef-
ficients of f̂ 2, by taking a quotient with remainder when each exponent in f 2 is divided by
5:

f̂ 2 = 25+60x 2y +36x 4y 2−30x y 10−36x 3y 11+9x 2y 20.

More generally, the Kronecker substitution corresponds to writing each exponent of the
univariate polynomial f in the mixed-radix representation with basis (d 1, d 2, . . . , d n), and us-
ing the fact that every nonnegative integer less than the product d 1d 2 · · ·d n has a unique rep-
resentation as an n-tuple in the mixed-radix representation to that basis (see Knuth, 1981,
§4.1).

8

CHAPTER 1. INTRODUCTION

A similar approach is used to convert a polynomial with coefficients in a finite field to an
integer. For a polynomial with coefficients in Z/mZ, for example, we can write each coeffi-
cient as its unique integer residue in the range 0, 1, . . . , m−1, then convert this to an integer (in
the binary representation) by evaluating the integer polynomial at a power of 2. If the power
of 2 is large enough, then this is an invertible map, as used for example by Harvey (2009) for
the problem of multiplication.

This conversion between integers and univariate polynomials over finite fields can also
be used in the other direction, as we will see in Section 1.4. However, observe that not ev-
ery problem works as nicely as multiplication. For instance, to factor a bivariate polynomial
f̂ ∈R[x , y], we could again use the Kronecker substitution to write f = f̂ (x ,x d) for d > degx f̂ ,
and then factor the univariate polynomial f ∈ R[x]. However, even though each factor of f̂
will correspond to a factor of f , observe that the converse is not true, so that recovering the
bivariate factors from the univariate ones is a non-trivial process. Reducing integer factoriza-
tion to polynomial factorization is even more problematic because of carries.

The Kronecker map is especially useful when polynomials are stored in the sparse repre-
sentation. If f ∈ R[x] and f̂ ∈ R[x1,x2, . . . ,xn] corresponding to the Kronecker substitution as
above, first notice that f and f̂ will have the same number of nonzero terms, and in fact the
same coefficients. Furthermore, if written in the sparse representation, these two polynomi-
als have essentially the same size. For simplicity, assume the partial degrees are all less than
d . Then each exponent in f is a single integer less than d n , and each exponent in f̂ is a vector
of integers each less than d . Writing these in binary, their bit-length in both cases is n log2 d ,
and so the representation size in the sparse model is identical, at least asymptotically.

This relationship will be useful for our purposes, as it means that algorithms for univariate
polynomials will remain polynomial-time under the Kronecker map. Roughly speaking, the
exponential increase in the degree only corresponds to a polynomial increase in the logarithm
of the degree, which corresponds to the size of the sparse representation. Hence algorithms
for univariate polynomials with very few terms and very high degree have an important ap-
plication. We will consider exactly this type of algorithm at various points throughout this
thesis.

1.3 Computational model

It is always important to carefully define the computational framework that will be used to
describe and analyse algorithms. In our case, this is more than an academic exercise, as the
choice of model will be crucially important for understanding our results in the first few chap-
ters.

1.3.1 Background

Countless descriptions of different abstract machines have been proposed over the last sev-
enty years as general models of mathematical computation. These models have a wide vari-
ety of motivations and goals; some are defined according to the functions they can compute,

9

CHAPTER 1. INTRODUCTION

some according to the structure of the computation, and some according to properties of a
class of actual digital computers. In the present work, we will prefer this final category for
its (hopeful) connection between theoretical results and practical performance. However, we
will discuss some other models as well for comparison.

Turing (1937) developed the model of the first abstract computing machine, the so-called
Turing machine, which we still use today as the basis for computability and basic complex-
ity classes such as P and NP. The greatest strength of this model is its simplicity and com-
putational equivalence to other fundamental models such as Church’s lambda calculus and
pushdown automata.

The slight refinement of multi-tape Turing machines are of particular interest here. The
simplest such machine has three tapes, a read-only input tape, a write-only output tape, and
a single working tape. More sophisticated models such as the seven-tape Turing machine of
Schönhage, Grotefeld, and Vetter (1994) have shown some evidence of practicality for math-
ematical computations, despite bearing little resemblance to actual machines.

However, Turing machines are known to over-estimate the cost of certain operations on
modern digital computers, the difference owing primarily to the way memory is accessed. In
Turing machine models, each tape has a single head for reading and/or writing which is only
allowed to move one position at each step of the computation. By contrast, the structure of
internal memory in any modern computer allows random access to any location with essen-
tially the same cost.

This motivated the definition of the random access machine (or RAM) by Cook and Reck-
how (1973). Their model looks similar to a 3-tape Turing machine, except that the work mem-
ory is not a sequential-access tape but rather an array that allows random access and indirect
addressing. Another important difference is that every memory location in input, output, or
working space can hold an integer of unbounded size, as opposed to the finite alphabet re-
striction in Turing machines. In addition to the usual operations such as LOAD, STORE, and
BRANCH, the instruction set of a RAM also contains operations for basic arithmetic such as
addition and multiplication of integers.

While the RAM model has seen much success and seems to be very commonly used in al-
gorithm design and analysis, it still has significant differences from actual digital computers.
The most obvious is the RAM’s ability to manipulate and store unbounded-length integers
with unit cost. This is somewhat mitigated by the log-cost RAM, in which the cost of an op-
eration on integers with values less than n is charged according to their bit-length: O(log n)
for all operations except MUL and QUO, which cost O(log2 n). A slightly more refined ap-
proach is presented by Bach and Shallit (1996, §3.6), where an interesting storage scheme is
also mentioned which would allow for sub-linear time algorithms. However, as pointed out
for instance by Grandjean and Robson (1991), these models still underestimate the cost of cer-
tain kinds of memory accesses and (at least for the log-cost RAM) define the cost of arithmetic
too bluntly.

Motivated by these shortcomings is the primary model we will rely on in this thesis, the
Random Access Computer (or RAC) of Angluin and Valiant (1979). This model bears some
similarity to pointer machines (Kolmogorov and Uspenskĭı, 1958; Schönhage, 1980; Schön-
hage et al., 1994) in that each memory location may hold a pointer to another memory loca-

10

CHAPTER 1. INTRODUCTION

tion. Reconciling this with the RAM model, each “pointer” is actually an integer of bounded
size, and this “word size” is dependent upon the size of the input. The model supports mod-
ular arithmetic on word-size integers as well as indirect addressing. This seems to be most
closely aligned to machine instructions in modern (sequential) computing architectures, and
the model we propose in the next subsection is essentially an elaboration on the RAC.

Having described the evolution and motivation of our model of choice, we briefly men-
tion some other computational models that will be of interest. First, on the practical side, a
shortcoming still of the RAC is that every random memory access is assumed to have the same
cost. On any modern computer, the multi-level memory hierarchy of registers, cache, main
memory, and disk grossly violates this assumption. Especially in algorithms with close to
linear complexity, the dominant cost often becomes that of memory access (these are called
memory-bounded operations). Models which seeks to address this are the I/O model or “DAM
model” of Aggarwal and Vitter (1988) and its cache-oblivious extension by Frigo, Leiserson,
Prokop, and Ramachandran (1999).

Backing away from practicality, most of the models mentioned so far are notoriously re-
sistant to any lower bounds for interesting problems. Simpler models such as circuits (equiv-
alently, straight-line programs), described in the previous section, are more useful for these
purposes, while still being sufficiently general to describe many algorithms in practice. A spe-
cial type of circuit of note here is the bounded coefficients model, in which every constant
appearing on an edge in the circuit must be of constant size (Chazelle, 1998).

The most significant shortcoming of circuits is that they do not allow branching; this is
overcome by branching programs, an extension of binary decision trees to general domains
(Borodin and Cook, 1980). In such models, each node represents a “state”, of the computation,
which proceeds according to the values computed. The size complexity in such models is
defined as the number of bits required to store this state, which is the logarithm of the number
of nodes.

1.3.2 In-Memory Machine

As mentioned before, the model we will use in this thesis is the Random Access Computer
(RAC) of Angluin and Valiant (1979). The primary motivation for this model was to get a closer
connection between practical performance and theoretical complexity for low-level compu-
tations. While high-level computations or entire programs may often read a large input from
a file (similar to the read-once input tape in a RAM), low-level computations are often subrou-
tines within a program, and therefore their input, as well as space for the output, presumably
resides in main (random-access) memory at the beginning of the computation.

In the RAC model, this in-memory property is handled by making a special additional
instruction to those of a standard RAM that loads the entire input into working memory in a
single step. Hence the memory structure of a RAC looks identical to that of a RAM, with the
primary difference being that the integers stored in each memory location have bit-length —
that is, the size of machine words — bounded (in some way) by the size of the input.

The model we define here gives a more detailed memory layout that will allow a richer
discussion of space complexity in the algorithms we develop. Our variation will also give

11

CHAPTER 1. INTRODUCTION

greater ease in composing algorithms, i.e., calling one algorithm as a subroutine of another.
It is computationally equivalent to the RAC, but for clarity, we will use the distinct name of
In-Memory Machine, or IMM for short.

Storage in the IMM is divided into four parts: constants (C), input (I), temporary working
space (T), and output (O). Each of these is represented by a sequential array, which we will
refer to respectively as MC , M I , M T , and MO . All four arrays allow random read access at unit
cost, and the work space and output also allow for random write access at unit cost.

Instruction Description
COPY(A, i , B , j) Copy the value of M A[M T [i]] to M B [M T [j]].

A must be one of C , I , T , or O.
B must be one of T or O.

BRANCH(i , L) Go to instruction labeled L iff M T [i] = 0.
ADD(i , j , k) M T [i]←M T [j]+M T [k] mod 2w

SUB(i , j , k) M T [i]←M T [j]−M T [k] mod 2w

MUL(i , j , k) M T [i]←M T [j] ·M T [k] mod 2w

QUO(i , j , k) M T [i]←
�

M T [j]
M T [k]

�

HALT Stop execution

Table 1.1: Instruction set for IMM model

The instruction set for the IMM is given in Table 1.1. The parameter w gives the word size,
so that 2w−1 is the largest integer that can be stored in a single word of memory. Observe that
only the COPY instruction involves indirect addressing. We must also specify that M T [i] = 0
initially for any i ≥ 0. For any instruction COPY(A, i , B , j)with B =O, i.e., a copy to the output
space, we also require that M T [j] is less than the size of the output. More precisely, using the
notation of the following paragraph, 0≤M T [j]<max(#O, #O ′).

A problem for IMM computation is described by a set S ⊆ (Z∗)3 of tuples (I ,O,O ′) indi-
cating the initial configurations of the input and output space, and the corresponding final
configuration of the output space. Most commonly, I will simply contain the input and O will
be empty, but the model allows for the output space to be wholly or partly initialized, for rea-
sons we will see. As O and O ′ will be stored in the same part of memory, the size of the output
space is defined to be max(#O, #O ′), and this also bounds the size of this part of memory at any
intermediate step in the computation, as detailed above. For the problem to be well-defined,
we of course require that any initial input and output configuration appears at most once in
S . That is, for any I ,O,O ′1,O ′2 ∈Z∗, if (I ,O,O ′1)∈S and (I ,O,O ′2)∈S , then O ′1 =O ′2.

The size n of a given instance (I ,O,O ′) ∈ S is defined as the size of the input and output,
n = #I +max(#O, #O ′). Every integer stored in memory must fit in a single word, but as in
the RAC model, this word size varies according to the size of the instance, as we will discuss
below.

An algorithm for an IMM problem consists of three components: a labeled list of instruc-
tions from the set in Table 1.1, a functionW : N→ N to define the word size, and a function
C :N→Z∗ to define the values stored in the array C of constants.

12

CHAPTER 1. INTRODUCTION

The word-size functionW (n) gives the number of bits w of a single word in memory for
any instance of size n . Consider the restrictions on the behaviour of W (n). First, machine
words must be large enough to hold every integer that appears in the input or output. For
a given problem S , defineMS (n) to be the largest integer appearing in any valid size-n in-
stance inS . Then we must haveW (n)≥ log2MS (n).

Furthermore, machine words must be large enough to address memory. To address the
input and output, this immediately implies that we must have W (n) ≥ log2 n . But the algo-
rithm may use more than n cells of memory in temporary storage. This is why the word-size
functionW (n)must be defined by the algorithm and not by the problem. However, we should
be careful in allowing the algorithm to set the word size, as settingW (n) to be very large could
make many computations trivial.

This “cheat” is avoided by requiring that algorithms may only increase the word-size by a
constant factor. Specifically, we require

W (n)∈O
�

log2 n + log2MS (n)
�

.

A consequence is that the IMM model is sufficiently rich to describe the computation of any
function in PSPACE.

There is one more comment to be made on the word size. The boundMS (n) comes from
the problem itself, but for some problems this is also flexible in a certain sense. For instance,
consider algorithms whose input or output contains arbitrary-precision integers. Encoding
every integer into a single word clearly violates the principle of the model, and eliminates
from discussion any algorithm for multiple-precision arithmetic. But how should a long inte-
ger be encoded into multiple words?

To address this issue, we say a problem is scalable if the size of integers in a length-n in-
stance are proportional to log2 n . More precisely, a problemS is scalable ifMS (n)∈O(log n).
Roughly speaking, this means that if the problem can be encoded into any actual computer
with fixed machine precision, then the word-size and word operations in any algorithm for
that problem correspond to a constant number of words and word operations on that real
computer.

The third component of an algorithm solving a problem on an IMM is the constants com-
putation function C (n). This gives the values stored in the array of constants C for any in-
stance size n . To avoid gratuitous cheats such as computing all possible answers as constants,
we also require that the number of constants, #C , be fixed for the algorithm independently of
the instance size. That is, #C does not vary according to the instance size, although the values
in C may. The C (n) function must be computable, and in most practical situations will be
trivial.

What it means to say that a given IMM algorithm correctly solves a given IMM problem
should be clear. We now turn to the cost analysis of an algorithm A. The time complexity of A,
written T (n), is the maximum over all instances of size n in S of the number of steps taken
by A to produce O ′ in the output space and halt. Importantly, this does not include the time
to compute W (n) and C (n). In the case that W (n) and C (n) can be computed in O(T (n))
time by an IMM with word size exactly log2 n and absolutely fixed constants, we say that the
algorithm A is universal.

13

CHAPTER 1. INTRODUCTION

The space complexity of algorithm A, written S(n), is based only on the size of M T , the
temporary working space. It is defined as the maximum i such that M T [i] is accessed in any
instruction during the execution of any valid instance of size n . Note that this differs crucially
from most notions of space complexity, in models where the input and output exist in read-
once and write-once tapes, respectively. We will see how the ability to read from and write to
the output space breaks at least some lower bounds.

Some portions of this thesis examine in-place algorithms. Intuitively, this means that the
output is overwritten with the input. More precisely, we say a problem given byS is in-output
if I is empty for every (I ,O,O ′) ∈S . That is, the data used as input for the algorithm is stored
in the initial configuration of the read-write output space. An algorithm for such a problem
is said to be in-place if it uses only O(1) temporary space in M T . To our knowledge, ours is
the first abstract computational model that allows a formal description of such problems and
algorithms.

The reader is referred to Angluin and Valiant (1979) for connections between time com-
plexity in the IMM (equivalently RAC) model and the more common RAM model. In particu-
lar, an algorithm with time complexity T (n) on a log-cost RAM can be simulated by an IMM
with the same cost, and an IMM algorithm with time complexity T (n) can be simulated on a
log-cost RAM with at most O(T (n) log2 n +n log n) operations.

Finally, some algorithms will make use of randomization to improve performance. To
this end, define a randomized IMM to be equivalent to the normal IMM with an additional
instruction RAND(i) that chooses an integer uniformly and randomly between 0 and 2W (n)−1
and stores its value in M T [i].

1.3.3 Storage specification for elements in common rings

The subject of this thesis is computations with polynomials in R[x1, . . . ,xn], where the sorts of
domains we have in mind for the ring R are the integers Z, rationals Q, finite fields Fq where
q is a prime power, and floating-point approximations to real and complex numbers in R
and C. For completeness, we discuss briefly how elements in these rings can be stored in the
memory of an IMM.

A natural number a ∈ N is stored in the 2w -adic representation as a list (a 0, a 1, . . . , a n−1)
with 0≤ a i < 2w for all i , and a = a 0+a 12w+a 222w+· · ·+a n−12(n−1)w . So each a i fits in a single
word of memory, and the entire representation of a may be stored either contiguously or (with
twice as much space) in a linked list. To extend this to all integers, we add an additional word
of storage for the sign. In any case, the size of the representation in memory is O(1

w
log a)

words of storage.

In the case of scalable problems as defined in the previous subsection, we conclude that
O(n) words in IMM (or RAC) memory can be used to represent any (n log2 n)-bit integer, and
conversely a single n-bit integer can always be represented in O(n/(log n)) words. (To be
more pedantic, we might additionally specify that the representation of a is preceded by a
single word indicating the length of the representation.)

14

CHAPTER 1. INTRODUCTION

A rational number inQ can always be written n/d with n , d ∈Z relatively prime and d > 0.
Such a number is simply represented as the pair (n , d).

Elements in a modular ring Z/mZ are stored as integers in the range {0, 1, . . . , m −1}. This
handles the case of finite fields Fp with prime order. For extension fields of size p e , we will
work in the isomorphic fieldFp/〈Γ〉 for Γ∈Fp [x] irreducible of degree e . Then we represent el-
ements in Fp e by polynomials in Fp [x]with degree less than e using the dense representation,
as an array of e elements from Fp .

Consider a real number α ∈ R in the range (0, 1), and any chosen small ε > 0. To store
an ε-approximate representation of α, we use an integer a stored in k =

1
w

log2
1
ε

£

words,

satisfying
�

�α−2−k w a
�

� < ε. This can be extended to any real number β by adding an integer
exponent b such that

�

�β −2b−k w a
�

� < ε · 2b . An approximation to a complex number γ ∈ C is
stored as a pair of approximate real numbers, representing the rectangular coordinates for γ.

For any of these rings, and for an element u ∈R in the ring, we write size(u) for the num-
ber of machine words required to represent u (where the parameter w for the word-size is
understood). So for instance if u ∈N is a nonnegative integer, size(u) =

�

logw (u)
�

.

Observe that addition in any of these rings is easily accomplished in linear time in the size
of their representation. We will discuss the cost of multiplication in the next subsection. An
important subroutine is modular multiplication with word-sized operands: given a ,b , c ∈ N
with 0 ≤ a ,b , c < 2w , computing r ∈ N with 0 ≤ r < c such that a · b ≡ r mod c . First the
multiplication a ·b is performed to double-word precision, by splitting each a ,b in half via a
division with remainder by 2bw /2c, then performing four word-size multiplications and some
additions. The division with remainder by c can then be accomplished using similar tech-
niques. In summary, the modular multiplication subroutine can be performed in a constant
number of word operations in the IMM.

1.3.4 Algebraic IMM

The results in the previous subsection handle storage and manipulation of algebraic objects
of various types within the usual IMM model. However, it is often convenient to describe and
analyse an algorithm independently of the particular domain of computation. For instance,
the same algorithm might work over an arbitrary field, whether it be a prime field, an ex-
tension field, the rational numbers, or any number of other fields. To present the algorithm
concisely, it would be useful to perform basic arithmetic in an arbitrary algebraic domain.

The concept of an algebraic RAM was developed to handle mathematical computations
involving integers as well as elements from an arbitrary domain. The idea is a usual RAM with
a single program but duplicated storage: two input tapes, two output tapes, and two memory
banks. (Often the input and output are only on one side.) The arithmetic side of the RAM
is in the usual model and computes with arbitrary-length integers, while the algebraic side
computes with elements from the chosen algebraic domain. This seems to be the dominant
model (whether or not explicitly stated) in algorithms for symbolic computation.

Along these lines, we extend our concept of IMM to an algebraic IMM. The four mem-
ory banks are duplicated on the arithmetic and algebraic sides, albeit not necessarily of the

15

CHAPTER 1. INTRODUCTION

same size. All instructions can be performed on either side of the IMM, but the two may
never be mixed. That is, it is impossible to (explicitly) copy values between the algebraic and
arithmetic sides. Furthermore, the specific arithmetic operations for the algebraic side might
differ from the ADD, SUB, MUL, and QUO of the arithmetic side, depending on the domain
and the specific problem.

An algorithm for an algebraic IMM consists of a single list of instructions, the two func-
tions W (n) and C (n), and a third functionA (n) to generate the constants on the algebraic
side. This function may produce different values for different domains and different instance
sizes n , but the size of the constant array on the algebraic side must be fixed for any valid
domain and any instance size.

A universal algorithm for an algebraic IMM is similar to before, with the additional re-
quirement thatA (n) can be computed in the same time and space complexity.

We could define an additional instruction for choosing random algebraic elements, but
this is problematic to define in a sensible generic way. Instead, a randomized algebraic al-
gorithm can define a subset of algebraic elements, stored in any part of the memory (input,
constants, output, or temporary working space), and then use a randomly-chosen integer to
index into the set. For all applications we are aware of, this will be sufficient to guarantee
performance, and also sufficiently general to be applicable in any domain.

Now consider the problem of representing a polynomial f ∈ R[x1, . . . ,xn] in an algebraic
IMM. In the dense representation, the entire polynomial can be stored in the algebraic side,
perhaps with some word-sized integers for the size on the arithmetic side. The recursive
dense representation is actually the most intricate of the three, and will be stored mostly on
the arithmetic side, with pointers to ring elements on the algebraic side at the bottom level
of recursion only. Finally, the sparse representation of a t -sparse polynomial will consist of a
length-t array of nonzero coefficients on the algebraic side, coupled with a length-nt array of
exponents on the arithmetic side.

1.4 Warm-up: O(n log n)multiplication

We now show the implications of the IMM model with an example: multiplication of multiple-
precision integers in Z. This is undoubtedly one of the most well-studied problems in mathe-
matical computation, and dense multiplication algorithms also hold a central importance in
this thesis. It is therefore not only instructive but prudent for us to examine the problem in
our chosen model of computation. Furthermore, some of the number-theoretic tools we use
here will come up again later in this thesis.

1.4.1 Summary of previous algorithms

The traditional model of study for integer multiplication algorithms is that of bit complexity.
So consider the problem of multiplying two n-bit integers, that is, a ,b ∈N such that 0≤ a ,b <
2n .

16

CHAPTER 1. INTRODUCTION

The naïve algorithm for multiplication uses O(n 2)word operations. Karatsuba’s algorithm
(Karatsuba and Ofman, 1963) uses a divide-and-conquer approach to improve the complexity
to O(n log2 3), or O(n 1.59). A family of divide-and-conquer algorithms due to Toom (1963) and
Cook (1966) improves this to O(n 1+ε), for any positive constant ε. Schönhage and Strassen
(1971) make use of the Fast Fourier Transform algorithm to improve the bit complexity to
O(n log n loglog n). Recently, this technique has been carefully refined by Fürer (2007) to
achieve O(n log n2log∗n) bit complexity for multiplication 1.

Knuth (1981, §4.3.3) discusses most of these algorithms from both a practical and a theo-
retical viewpoint. Of note here is an idea presented by Knuth but attributed to Schönhage to
achieve O(n log n) complexity in a log-cost RAM for multiplication. The idea is to use complex
number arithmetic and use the so-called Four Russians trick (Arlazarov, Dinic, Kronrod, and
Faradžev, 1970) to precompute all products under a certain size. In the storage modification
machine (SMM) model, Schönhage (1980, §6) shows how to achieve O(n) time for n-bit inte-
ger multiplication, which is also similar to our result here. (By way of comparison, Schönhage
explicitly states that the goal of his model is not to correspond to any “physical realization”,
but rather to develop a flexible and general model for its own sake. Our IMM model has the
opposite motivation.)

1.4.2 Integer multiplication on an IMM

The algorithm presented here achieves a similar result to Schönhage’s O(n log n) algorithm
for a RAM, but without the need for extensive precomputation, and using only modular arith-
metic. The idea is similar to the “Three primes FFT integer multiplication” algorithm of von
zur Gathen and Gerhard (2003, §8.3), extended to arbitrary word sizes. We now proceed to
describe the problem and our algorithm for the IMM model.

As is standard, for simplicity we restrict our attention to the case that both multiplication
operands are of roughly the same size. A valid instance inS will consist of input I containing
two integers a and b , each n words long, output O initially empty, and O ′ — the desired output
— consisting of the product ab written in 2n words of memory. The total instance size is
therefore 4n , and this completes the formal description of the problem.

Write m = log2 max(4n ,MS (n)), the lower bound on the word size implied by the problem
definition. We assume the input integers a and b are written in the 2m -adic representation as

a = a 0+a 1 ·2m +a 2 ·22m + · · ·+a n−1 ·2(n−1)m

b = b0+b1 ·2m +b2 ·22m + · · ·+bn−1 ·2(n−1)m .

Now define the polynomial A(x) = a 0+ a 1x + · · ·+ a n−1x n−1 ∈ Z[x] and B (x) ∈ Z[x] similarly.
Our approach is to compute the product A(x) · B (x) = C (x) ∈ Z[x], then evaluate C (2m) to
compute the final result and write it again in the 2m -adic representation.

1The iterated logarithm, denoted log∗n , is the extremely slowly-growing function defined as the number of
times logarithm must be taken to reduce n to 1. So, for instance, if n > 1, log∗n = log∗(log n)+1.

17

CHAPTER 1. INTRODUCTION

Let k be the least power of 2 greater than 2n , i.e., k = 2dlog2 n e+1. Our algorithm works by
first choosing a set of primes P such that for each p ∈ P , (p − 1) is divisible by k , and the
product of the primes inP is at least 23m .

From the fact that deg A, deg B < n and every coefficient of A and B is at less than 2m , we
can see that every coefficient in C is less than n ·22m , which is less than 23m from the definition
of m . Therefore computing the coefficients of C mod p for each p ∈ P , followed by Chinese
remaindering, will give the actual integer coefficients of C .

Furthermore, since the multiplicative group of integers modulo each prime p ∈ P is di-
visible by a power of 2 greater than degC , the coefficients of C mod p can be efficiently com-
puted using the Fast Fourier Transform, using O(n log n) operations in Fp , assuming a k ’th
primitive root of unity modulo p (which must exist) is known in advance. Denote such a root
of unityωp for each p ∈P .

The crucial question that remains is how large each p must be to satisfy these conditions.
For this, we turn to analytic number theory, and in particular Linnik’s theorem (which we
somewhat simplify for our particular purposes):

Fact 1.2. (Linnik, 1944) There exist absolute constants qL , cL , L such that, for all q ≥qL , the least
prime p such that p ≡ 1 mod q satisfies p ≤ cLq L .

Unfortunately, despite the large body of work devoted to finding concrete values for the
exponent L, it appears that no proofs give explicit values for both qL and cL . Although the
exponent L has been improved recently by Xylouris (2009), the most useful result for us is from
Heath-Brown (1992), where it is proven that the inequality above holds for qL = 1, L = 5.5, and
cL is an effectively computable absolute constant.

From this, we have the following.

Lemma 1.3. There exists an absolute constant c such that, for any k , m ∈ N as above, there
exists a set of at most three primesP with

∏

p∈P p ≥ 23m and, for each p ∈P ,

1. k divides (p −1)
2. p ≤ c 216.5m .

Proof. Let cL be the (effectively computable) constant from the version of Linnik’s theorem
by Heath-Brown (1992).

Let p1 be the least prime congruent to 1 modulo 2m . We have that p1 < cL(2m)5.5 = cL ·25.5m .

If p1 ≥ 23m , then we simply setP = {p1}. Otherwise, let p2 be the least prime congruent to
1 modulo 2dlog2 p1e. Since p2 has a divisor greater than p1, clearly p2 6= p1, and furthermore we
see that 2m divides (p2−1). Finally, 2dlog2 p1e < 23m+1, and therefore p2 ≤ cL(23m+1)5.5 < 64cL ·216.5.

If p1p2 ≥ 23m , then set P = {p1, p2}. Otherwise, let p3 be the least prime congruent to 1
modulo 2dlog2 p2e as previously and observe that p3 < 64cL ·216.5 as well.

At this point, since each of p1, p2, p3 is greater than 2m , their product is at least 23m . So set
P = {p1, p2, p3} in this case.

18

CHAPTER 1. INTRODUCTION

From the definition of m , 4n < 2m . Recalling also that k is the least power of two greater
than 2n , it must be the case that k | 2m , and therefore k divides each p i − 1. Letting c = 64cL ,
we get the stated result.

For our IMM integer multiplication algorithm, then, we setW (n)— the word size for in-
stance size n — to be W (n) =

�

log2 c
�

+ 16.5m . This means that each p ∈ P will fit into a
single word in memory. ClearlyW (n) is bounded by

W (n)∈O(log n + logMS (n)) =O(m),

so this is allowable in the IMM model.

The constants defined byC (n) for our algorithm will consist of the (at most three) primes
in P , along with the k ’th primitive roots of unity modulo each prime in P . For any n , this
consists of at most six words of memory, so the constants are also valid for the IMM model.

This completes the description of our algorithm for multiplication in the IMM model. Be-
cause arithmetic modulo a word-sized integer can be performed in a constant number of
steps, the cost of arithmetic operations in Fp is constant for each p ∈ P . Therefore the to-
tal cost of the algorithm is simply O(n log n) word operations, the cost of the modular FFT
computations.

This result is summarized in Theorem 1.4 below. Unfortunately, as the constant cL is not
known explicitly, we have only shown the existence of an algorithm. Some more careful steps
and repeated doubling in the computation ofW (n) and C (n) could avoid this issue, but we
will not go into those details here.

Theorem 1.4. There exists an IMM algorithm for multiplying n-word integers that runs in time
O(n log n).

Another unfortunate fact is that the algorithm is not universal, i.e., the word-size and con-
stants cannot be computed in the same time as the algorithm itself. This is because of the cost
of searching for each prime p ∈P , which could be avoided by either (1) using randomization
to randomly choose primes in the progression, or (2) assuming a more realistic bound on the
least prime in an arithmetic progression. The latter possibility will be discussed at length in
Chapter 8.

1.4.3 Implications

Observe that the problem as defined for integer multiplication in the previous subsection
is not scalable. That is, the size m of words in the input could be much larger than log2 n .
This actually means that our O(n log n) algorithm is actually a stronger result, as it applies no
matter what the word size is.

To compare the result of Theorem 1.4 against previous work in the bit complexity model,
we should restrict the problem to be scalable. The word size for a size-n input is then re-
stricted to O(log n), meaning that an n-bit integer requires exactly Θ(n/(log n))words of stor-
age. Therefore the algorithm described can be used to multiply n-bit integers using O(n)word

19

CHAPTER 1. INTRODUCTION

operations in the IMM model. This matches the algorithm of Schönhage (1980) in the SMM
model but (like that result) can be misleading, as it counts the input in bits but the cost in
word operations.

Simulating the algorithm described above on a log-cost RAM is a fairer comparison, and
gives bit complexity O(n log2 n) for n-bit integer multiplication. This could be improved at
least to some extent with a more careful simulation, but we will not attempt that exercise.

The fast integer multiplication algorithm can be applied to other rings represented in
words in the IMM, as well as to polynomials with coefficients in such rings and stored in the
dense representation, using the Kronecker substitution.

For instance, consider the multiplication of two univariate integer polynomials A, B ∈Z[x]
with degrees less than d and all coefficients stored in at most k words. Observe that the in-
stance size n isΘ(d k). To compute A ·B ∈Z[x], simply write down the integers a = A(2(2k+1)w)
and b = B (2(2k+1)w), and multiply them. Since each integer is stored in O(d k) =O(n) words,
the cost of this multiplication is O(n log n). Furthermore, each coefficient in A · B is at most
d · (2w k)2 ≤ 2(2k+1)w , so the coefficients of A ·B can simply be read off from the integer product
ab .

This same idea can be extended to any R[x1, . . . ,xm], with R any of the rings mentioned
in subsection 1.3.3 to perform dense polynomial multiplication in time O(n log n), where n is
the size of a single instance in the IMM. However, importantly, we do not have a O(n log n) al-
gorithm for multiplication of dense polynomials over an arbitrary ring R in the algebraic IMM
model. This is because there is no way to encode the elements of an arbitrary ring into inte-
gers. In this case, the best result is still that of Cantor and Kaltofen (1991), giving an algorithm
for polynomial multiplication in an algebraic IMM using O(n log n loglog n) ring operations.

In summary, we see that the IMM model can allow very slight improvements over the best
known bit complexity results. However, these differences are quite minor, and furthermore we
would argue that the IMM model gives a more accurate measure of the actual cost on actual
physical machines. In the remainder, the IMM model will form the basis of our discussions
and analysis, although the algorithms will not be presented so formally as they have been
here. Furthermore, most of our results will apply equally well to more common models such
as (algebraic) RAMs.

20

Bibliography

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31:1116–1127, September 1988. ISSN 0001-0782.
doi: 10.1145/48529.48535. Referenced on page 11.

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and match-
ings. Journal of Computer and System Sciences, 18(2):155 – 193, 1979. ISSN 0022-0000.
doi: 10.1016/0022-0000(79)90045-X. Referenced on pages 10, 11 and 14.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. The economical construction
of the transitive closure of an oriented graph. Dokl. Akad. Nauk SSSR, 194:487–488, 1970.
ISSN 0002-3264. Referenced on page 17.

Eric Bach and Jeffrey Shallit. Algorithmic number theory. Vol. 1. Foundations of Computing
Series. MIT Press, Cambridge, MA, 1996. ISBN 0-262-02405-5. Referenced on page 10.

Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22(3):317 – 330, 1983. ISSN 0304-3975.
doi: 10.1016/0304-3975(83)90110-X. Referenced on page 5.

E. R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J., 46:1853–1859,
1967. ISSN 0005-8580. Referenced on page 7.

A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential model of
computation. In Proceedings of the twelfth annual ACM symposium on Theory of comput-
ing, STOC ’80, pages 294–301, New York, NY, USA, 1980. ACM. ISBN 0-89791-017-6.
doi: 10.1145/800141.804677. Referenced on page 11.

David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary al-
gebras. Acta Informatica, 28:693–701, 1991. ISSN 0001-5903.
doi: 10.1007/BF01178683. Referenced on pages 7 and 20.

David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite
fields. Math. Comp., 36(154):587–592, 1981. ISSN 0025-5718.
doi: 10.2307/2007663. Referenced on page 7.

Bernard Chazelle. A spectral approach to lower bounds with applications to geometric search-
ing. SIAM Journal on Computing, 27(2):545–556, 1998.
doi: 10.1137/S0097539794275665. Referenced on page 11.

157

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1016/0022-0000(79)90045-X
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1145/800141.804677
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.2307/2007663
http://dx.doi.org/10.1137/S0097539794275665

Stephen A. Cook and Robert A. Reckhow. Time bounded random access machines. Journal of
Computer and System Sciences, 7(4):354–375, 1973. ISSN 0022-0000.
doi: 10.1016/S0022-0000(73)80029-7. Referenced on page 10.

Stephen Arthur Cook. On the minimum computation time of functions. PhD thesis, Harvard
University, 1966. Referenced on page 17.

James H. Davenport and Jacques Carette. The sparsity challenges. In Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC), 2009 11th International Symposium
on, pages 3 –7, September 2009.
doi: 10.1109/SYNASC.2009.62. Referenced on page 7.

Mark J. Encarnación. Black-box polynomial resultants. Information Processing Letters, 61(4):
201–204, 1997. ISSN 0020-0190.
doi: 10.1016/S0020-0190(97)00016-1. Referenced on page 5.

Richard Fateman. Draft: Comparing the speed of programs for sparse polynomial multiplica-
tion. Online, July 2002.
URL http://www.cs.berkeley.edu/~fateman/algebra.html. Referenced on page 6.

Michael Filaseta, Andrew Granville, and Andrzej Schinzel. Irreducibility and greatest common
divisor algorithms for sparse polynomials. In Number theory and polynomials, volume 352
of London Math. Soc. Lecture Note Ser., pages 155–176. Cambridge Univ. Press, Cambridge,
2008.
doi: 10.1017/CBO9780511721274.012. Referenced on page 8.

Timothy S. Freeman, Gregory M. Imirzian, Erich Kaltofen, and Lakshman Yagati. Dagwood:
A system for manipulating polynomials given by straight-line programs. ACM Trans. Math.
Softw., 14:218–240, September 1988. ISSN 0098-3500.
doi: 10.1145/44128.214376. Referenced on page 5.

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Symposium
on, pages 285–297, 1999.
doi: 10.1109/SFFCS.1999.814600. Referenced on page 11.

Martin Fürer. Faster integer multiplication. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, STOC ’07, pages 57–66, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-631-8.
doi: 10.1145/1250790.1250800. Referenced on page 17.

Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-line programs.
Theoretical Computer Science, 410(27-29):2659–2662, 2009. ISSN 0304-3975.
doi: 10.1016/j.tcs.2009.03.030. Referenced on page 3.

Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge, second edition, 2003. ISBN 0521826462. Referenced on page 17.

158

http://dx.doi.org/10.1016/S0022-0000(73)80029-7
http://dx.doi.org/10.1109/SYNASC.2009.62
http://dx.doi.org/10.1016/S0020-0190(97)00016-1
http://www.cs.berkeley.edu/~fateman/algebra.html
http://dx.doi.org/10.1017/CBO9780511721274.012
http://dx.doi.org/10.1145/44128.214376
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1145/1250790.1250800
http://dx.doi.org/10.1016/j.tcs.2009.03.030

Etienne Grandjean and J. Robson. RAM with compact memory: a realistic and robust model
of computation. In E. Börger, H. Büning, M. Richter, and W. Schönfeld, editors, Computer
Science Logic, volume 533 of Lecture Notes in Computer Science, pages 195–233. Springer
Berlin /Heidelberg, 1991.
doi: 10.1007/3-540-54487-9_60. Referenced on page 10.

David Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. Jour-
nal of Symbolic Computation, 44(10):1502–1510, 2009. ISSN 0747-7171.
doi: 10.1016/j.jsc.2009.05.004. Referenced on page 9.

D. R. Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an
arithmetic progression. Proc. London Math. Soc., s3-64(2):265–338, March 1992.
doi: 10.1112/plms/s3-64.2.265. Referenced on page 18.

Joris van der Hoeven. The truncated Fourier transform and applications. In Proceedings of
the 2004 international symposium on Symbolic and algebraic computation, ISSAC ’04, pages
290–296, New York, NY, USA, 2004. ACM. ISBN 1-58113-827-X.
doi: 10.1145/1005285.1005327. Referenced on page 2.

Stephen C. Johnson. Sparse polynomial arithmetic. SIGSAM Bull., 8:63–71, August 1974. ISSN
0163-5824.
doi: 10.1145/1086837.1086847. Referenced on page 7.

Erich Kaltofen. Factorization of polynomials given by straight-line programs. In Randomness
and Computation, pages 375–412. JAI Press, 1989. Referenced on page 5.

Erich Kaltofen and Pascal Koiran. On the complexity of factoring bivariate supersparse (la-
cunary) polynomials. In ISSAC ’05: Proceedings of the 2005 international symposium on
Symbolic and algebraic computation, pages 208–215, New York, NY, USA, 2005. ACM. ISBN
1-59593-095-7.
doi: 10.1145/1073884.1073914. Referenced on page 7.

Erich Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and
denominators. Journal of Symbolic Computation, 9(3):301–320, 1990. ISSN 0747-7171.
doi: 10.1016/S0747-7171(08)80015-6. Computational algebraic complexity editorial.
Referenced on pages 5 and 7.

Erich L. Kaltofen. The “seven dwarfs” of symbolic computation. Manuscript prepared for the
final report of the 1998-2008 Austrian research project SFB F013 “Numerical and Symbolic
Scientific Computing,” Peter Paule, director, April 2010.
URL http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_7dwarfs.
pdf. Referenced on page 2.

A. A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata. Doklady
Akademii Nauk SSSR, 7:595–596, 1963. Referenced on pages 7 and 17.

159

http://dx.doi.org/10.1007/3-540-54487-9_60
http://dx.doi.org/10.1016/j.jsc.2009.05.004
http://dx.doi.org/10.1112/plms/s3-64.2.265
http://dx.doi.org/10.1145/1005285.1005327
http://dx.doi.org/10.1145/1086837.1086847
http://dx.doi.org/10.1145/1073884.1073914
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_7dwarfs.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/10/Ka10_7dwarfs.pdf

Donald E. Knuth. The art of computer programming, Volume 2: seminumerical algorithms.
Addison-Wesley, Boston, MA, 1981. ISBN 0-201-89684-2. Referenced on pages 8 and 17.

A. N. Kolmogorov and V. A. Uspenskĭı. On the definition of an algorithm. Uspehi Mat. Nauk,
13(4(82)):3–28, 1958. ISSN 0042-1316.
URL http://mi.mathnet.ru/eng/umn7453. Referenced on page 10.

Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
Journal Für die reine und angewandte Mathematik, 92:1–122, 1882. Referenced on page
8.

H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomials. In Number theory
in progress, Vol. 1 (Zakopane-Kościelisko, 1997), pages 267–276. de Gruyter, Berlin, 1999.
Referenced on page 7.

U. V. Linnik. On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phe-
nomenon. Rec. Math. [Mat. Sbornik]N.S., 15(57):347–368, 1944. Referenced on page 18.

Philippe Pébay, J. Maurice Rojas, and David C. Thompson. Optimizing n-variate (n + k)-
nomials for small k . Theoretical Computer Science, In Press, Corrected Proof, 2010. ISSN
0304-3975.
doi: 10.1016/j.tcs.2010.11.053. Referenced on page 8.

Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009. Refer-
enced on page 5.

A. Schönhage. Storage modification machines. SIAM Journal on Computing, 9(3):490–508,
1980.
doi: 10.1137/0209036. Referenced on pages 10, 17 and 20.

A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,
1971. ISSN 0010-485X.
doi: 10.1007/BF02242355. Referenced on pages 7 and 17.

Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter. Fast algorithms. Bibli-
ographisches Institut, Mannheim, 1994. ISBN 3-411-16891-9. A multitape Turing machine
implementation. Referenced on page 10.

David R. Stoutemyer. Which polynomial representation is best? Surprises abound! In Proc.
1984 Macsyma users’ conference, pages 221–243, Schenectady, New York, 1984. Referenced
on page 6.

A. L. Toom. The complexity of a scheme of functional elements simulating the multiplication
of integers. Doklady Akademii Nauk SSSR, 150:496–498, 1963. ISSN 0002-3264. Referenced
on page 17.

A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. London Math. Soc., s2-42(1):230–265, 1937.
doi: 10.1112/plms/s2-42.1.230. Referenced on page 10.

160

http://mi.mathnet.ru/eng/umn7453
http://dx.doi.org/10.1016/j.tcs.2010.11.053
http://dx.doi.org/10.1137/0209036
http://dx.doi.org/10.1007/BF02242355
http://dx.doi.org/10.1112/plms/s2-42.1.230

Triantafyllos Xylouris. On Linnik’s constant. Technical report, arXiv:0906.2749v1 [math.NT],
2009.
URL http://arxiv.org/abs/0906.2749. Referenced on page 18.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Edward Ng, editor, Sym-
bolic and Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages
216–226. Springer Berlin /Heidelberg, 1979.
doi: 10.1007/3-540-09519-5_73. Referenced on page 7.

Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic Computa-
tion, 9(3):375–403, 1990. ISSN 0747-7171.
doi: 10.1016/S0747-7171(08)80018-1. Computational algebraic complexity editorial.
Referenced on page 7.

161

http://arxiv.org/abs/0906.2749
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1016/S0747-7171(08)80018-1

	Introduction
	Overview
	Polynomials and representations
	Functional representation
	Algebraic representations
	Algorithms
	Univariate polynomials

	Computational model
	Background
	In-Memory Machine
	Storage specification for elements in common rings
	Algebraic IMM

	Warm-up: O(n log n) multiplication
	Summary of previous algorithms
	Integer multiplication on an IMM
	Implications

	Bibliography

