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Polynomials String ng Sumset

Three Related Problems

Polynomial Multiplication
(x—xy) X Py =X’y +y* ~y)
- 20y =3y = Py + 20 —xy® —xy

String Matching with Wildcards (a.k.a. “don’t-cares”)
.E...Tin PRESENTATIONS
—  RESENT, SENTAT

X + Y a.k.a. Sumset
{1,5} © {4,6,8,10}
—  {5,7,9,11,13,15}
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Back to Multiplication

Three Related Problems

Polynomial Multiplication
(x—xy) X (@Y =y +y* —y)
- 202 =3y =Py + 2xy? —xyd —xy

String Matching with Wildcards (a.k.a. “don’t-cares”)
.E...Tin PRESENTATIONS
—  RESENT, SENTAT

X + Y a.k.a. Sumset
{1,5} © {4,6,8,10}
—  {5,7,9,11,13,15}

Common Feature

The output can have quadratic size,
but it’s frequently much smaller.



Sumset

Our Result

A randomized algorithm for Polynomial Multiplication,
Sumset, and Sparse Wildcard Pattern Matching,
whose running time is nearly linear
in the size of the input and the output.



Polynomials String Matching Sumset Back to Multiplication

Scale of improvement

What does it look like to reduce quadriatic running time to
randomized nearly-linear running time?

Analogous example: Sorting

Insertion Sort QuickSort
O(n?), deterministic | O(nlog n), randomized

<] 75KB 6 seconds 30 milliseconds
1.44MB 40 minutes 0.7 seconds

@ 700MB 19 years? 11 minutes
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What is the size of a polynomial?

Polynomials are a basic building block of mathematical and
scientific computation.

They can have many variables (n):
X1X3X5 + X1X2X3X4X9 + X2X6X7X8X9 + X4X5X6X7

...or large coefficients (C = largest coefficient):
34735667x'% — 86916241x'° — 70003088x° + 3786735x°

...or very high degree (D = max degree):

x770352 _ 2)6506115 + 2x465975 422527

+ 9x
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What is the size of a polynomial?

Polynomials are a basic building block of mathematical and
scientific computation.

They can have many variables (n):
X1X3X5 + X1X2X3X4X9 + X2X6X7X8X9 + X4X5X6X7

...or large coefficients (C = largest coefficient):
34735667x'% — 86916241x'° — 70003088x° + 3786735x°

...or very high degree (D = max degree):

x770352 _ 2)C506115 + 2x465975 9x422527

+

How do we store these in computer memory?
What are the algorithms to perform basic arithmetic?
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Step 0: Reduce to one variable

Given a multivariate polynomial in xp, x2, x3, . . .,
find a univariate polynomial in z that has all the same information.

Kronecker Substitution

If D is larger than any exponeznt in the E)olynomial, replace
FOer,xa, .. x) With f(z,22,22, ..., 2.

The resulting degree is roughly D".

Example
fy) =x2y? =2y +y* -y

fey=29+2-5-7



Polynomials String Matching

Sumset

Back to Multiplication

Step 0: Reduce to one variable

Given a multivariate polynomial in xp, x2, x3, . . .,
find a univariate polynomial in z that has all the same information.

Kronecker Substitution

If D is larger than any exponent in the polynomial, replace
- 2 —1
F&x1,x2, .0, x,) With f(z, 22,227, ..., 2P,

The resulting degree is roughly D".

Randomized Kronecker Substitutions [Arnold & R. 2014]

If T is the number of terms in the polynomial, replace
f(xl’XZ’ A ,xn) Withf(ZSI’Zsz’ . ’an)!

where each s; is a random integer less than T.

The resulting degree is roughly DT.
(But you have to repeat this O(n) times.)



Polynomials

Kronecker Example

Example

f(x,y) = mx + By + mxty + my? + mxy® + mxty? + mxdy?
(colored boxes m represent coefficients)

Visualization of f(x,Y):
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Kronecker Example

Example

flx,y) =mx+ lx3y + lx4y + ly2 + xy3 + lx4y3 + lx3y4
(colored boxes m represent coefficients)

Visualization of f(x, xPy):
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Kronecker Example

Example

f(x,y) = mx + By + mxty + my? + mxy® + mxty? + mxdy?

(colored boxes m represent coefficients)

Visualization of f(x, xPy):

Kronecker substitution: f(z, z°), degree 23
N[ [WIN{ (O[] | [0
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Randomized Kronecker Example

Example

x,y) = Bx + By + mxty + my? + mxy’ + mxty? + mdy?
y y y y xy y y
(colored boxes m represent coefficients in R)

Visualization of f(x,y):
y

LB
LA
IO
[ [
[ [m] [

[ )]

Kronecker substitution: f(z,z"), degree 23
] {0 |
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Randomized Kronecker Example

Example

x,y) = Bx + By + mxty + my? + mxy’ + mxty? + mdy?
y y y y xy y y
(colored boxes m represent coefficients in R)

Visualization of f(x2, y):
y

U]
|
O |
[IWCICE
[ ]

Kronecker substitution: f(z,z"), degree 23
] {0 |
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Randomized Kronecker Example

Example

x,y) = Bx + By + mxty + my? + mxy’ + mxty? + mdy?
y y y y xy y y
(colored boxes m represent coefficients in R)

Visualization of f(x?, x’y):
y

OO 0O W O
AR RN, |
w000
HEREEREEE BN
[1 W (][] []

X
Kronecker substitution: f(z,z"), degree 23
] {0
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Randomized Kronecker Example

Example

x,y) = Bx + By + mxty + my? + mxy’ + mxty? + mdy?
y y y y xy y y
(colored boxes m represent coefficients in R)

Visualization of f(x?, x’y):
y

OO 0O W O
AR RN, |
w000
HEREEREEE BN
[1 W (][] []

X
Randomized Kronecker substitution: f(z2, z°), degree 18
[0 I T T I e z
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Dense Polynomial Representation

A coefficient array indexed by exponent value
is great with just one variable and small degree:

4510 408 4 4k + 7x0 + 42 + 8
[1]5/0]9l4[7]ofofo[1]0]8]




Polynomials

Dense Polynomial Representation

A coefficient array indexed by exponent value
is great with just one variable and small degree:

4510 408 4 4k + 7x0 + 42 + 8

(1507947 [0f0T0] 1 [078]

Zero coefficients are stored explicitly — possibly wasteful
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Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ 7x0 + 42 + 8
[1]5/0f9]4[7]ofof0[1]0]8

X

23 +x2+5

[112[1]0]5]




Polynomials Sumse Back to Multiplication

Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ TAO + X2+ 8
[d57of9[4[7[oJofo[1[0]8]

X

23 +x2+5

2[1]0]5]




Polynomials

Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T + 70+ 42+ 8
[1[8To]9[4[7[oJo]o[1[0]8]

X

23 +x2+5

2[1]0]5]

x15 + 5x14

D T T T T TTTTTTITTT]
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Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ TAO + X2+ 8
[d57of9[4[7[oJofo[1[0]8]

X

23 +x2+5

1]0]5]
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Dense multiplication
“School” multiplication algorithm:
a1+ 5x10 4 0x® 4 47 + 7x0 + 4% + 8
[Tsol9[4][7]0[oJo[1]0]8]

x [5]o]1]2]

5402 +20° + x4
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Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ 7x0 + 42 + 8
[il8To[9[4[7[oJofo[1[0]8]
x

5402 +20° + x4

x15 + 7.X14

DB [T T T TTTTTTTT]




Polynomials

Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ 7x0 + 42 + 8
[f8ToT e 4][7]0lofo[1]0]8]
x

5402 +20° + x4

X+ T 1183

D7E [ T[T TTTTTTTT]




Polynomials

Dense multiplication

“School” multiplication algorithm:

4 5x10 408 4 4T 4+ 7x0 + 42 + 8
[1]5[0/9[4 0]8]
x [5[o]1]2[1]

542 +20° + x4

xS+ 7 118 + oo +36x°
[11711]14[27]49]18/52]20[36] | | | | | |

Running time: O(D,D;), quadratic in the degree
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Fast Dense Multiplication

This is a powerful tool!

@ Karatsuba (1962): O(n'>)
@ Toom-Cook (1966): O(n'*7)

@ Schénhage-Strassen (1971): O(nlognloglogn)

@ Cantor-Kaltofen (1991): O(nlognloglogn)

@ Fiirer (2007): O(nlog n2000g*m)

@ De, Kurur, Saha, Saptharishi (2008): O(n log n2002*m)
@ Harvey, van der Hoeven, Lecerf (2014): O(n log n8'°2*")
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Fast Dense Multiplication

This is a powerful tool!

@ Karatsuba (1962): O(n'>)
@ Toom-Cook (1966): O(n'*7)

@ Schénhage-Strassen (1971): O(nlognloglogn)

@ Cantor-Kaltofen (1991): O(nlognloglogn)

@ Fiirer (2007): O(nlog n2000g*m)

@ De, Kurur, Saha, Saptharishi (2008): O(n log n2002*m)
@ Harvey, van der Hoeven, Lecerf (2014): O(nlog n8'°2*")

All results since Schénhage-Strassen use FFTs
and have nearly linear O™(n) complexity.
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Sparse Polynomials

Frequently, polynomials have many zero coefficients:

X204 9x12 4 4x!l 4 242
[1/0]/0/0[0l0[0l0[0/0[0]0[0[0l0]0[0[9[4[0/0[0]0[0[0[0]0[2[0[0]




Polynomials String Matching Sumset Back to Multiplication

Sparse Polynomials

Frequently, polynomials have many zero coefficients:

X204 9x12 4 4x!l 4 242
[1/0]/0/0[0l0[0l0[0/0[0]0[0[0l0]0[0[9[4[0/0[0]0[0[0[0]0[2[0[0]

Then the sparse representation, a list of coefficient/exponent pairs,
is more compact:

X204 9x12 4 4!l 4 242

29(12|11| 2
119|4|2
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Sparse Polynomial Addition

In arithmetic operations, there are two kinds of sparsity:

| ]

| ]




Sparse Polynomial Addition

In arithmetic operations, there are two kinds of sparsity:

| ]

| ]

([N NN BN

@ Structural sparsity is 7.
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Back to Multiplication

Sparse Polynomial Addition

In arithmetic operations, there are two kinds of sparsity:

@ Structural sparsity is 7.
@ Arithmetic sparsity is 5.
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Sparse Multiplication

“School” multiplication algorithm:

6_x4

Ll ol ] Pl TPT

X

X0+ 8 = x

- + X

EINENEN




Polynomials

Sparse Multiplication

“School” multiplication algorithm:

6_x4

BT [ [ T [T
x L[]
X - XS

X0+ 8 = x




Polynomials

Sparse Multiplication

“School” multiplication algorithm:

6_x4

DL BT ] [ [T 1]
x Ll [ ]
X - x5

X0+ 8 = x

_x15 _x13

Kl EEEEEEEEEEEEE
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Sparse Multiplication

“School” multiplication algorithm:

K0 4 8 — 46 — 4

BT T B [ [T 1]
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Sparse Multiplication

“School” multiplication algorithm:

K0 4 8 — 46 — 4

DL DT T B [T 1]
< [ B [ 4]
X - XS

x5 X ool 4250 T =X

AL AT Te] Jo[ 4] B T [ []]

Running time: O (T, T,), quadratic in the number of terms
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Output-Sensitive Sparse Multiplication

Quadratic-time already defeated in many cases:

@ Recursive dense

@ Chunky, equal spaced (R. '11)

Blockwise dense (van der Hoeven & Lecerf '12)

(4]

Homogeneous dense (Gastineau & Laskar '13)

(]

Support on a lattice (van der Hoeven, Lebreton, Schost *13)

(]

Support is given (van der Hoeven & Lecerf ’13)
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Sparse Interpolation

Another powerful tool!

Sparse Polynomial Interpolation Problem

Given a way to evaluate f(0) at any 6,
plus bounds on degree, sparsity, and height,
determine the coefficients and exponents of f.

Reduces polynomial multiplication to scalar multiplication, because

h=f-g = h®)=[0)-g®)
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Back to Multiplication

Sparse Interpolation Algorithms

“Big prime” algorithms
Computation is performed modulo p, p > deg(fg).

But one evaluation needs O7(T log deg(fg)) ops modulo p;
hence at least O7(T log? deg(fg)) bit complexity

Prony (1795)

Ben-Or & Tiwari (1988)
Kaltofen & Lakshman (1989)
Kaltofen & Lee (2003)

Cuyt & Lee (2010)

®© 6 6 o o
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Back to Multiplication

Sparse Interpolation Algorithms

“Small primes” algorithms
Computations performed modulo small primes p.

But all algorithms still need O7(T' log” deg(fg)) operations.

@ Grigoriev & Karpinsky (1987)
@ Garg & Schost (2007)

o Giesbrecht & R. (2011)

@ Arnold, Giesbrecht & R. (2014)
@ Khochtali, R. & Tian (2015)
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Sparse Interpolation Algorithms

“Big prime” algorithms
Computation is performed modulo p, p > deg(fg).

But one evaluation needs O7(T log deg(fg)) ops modulo p;
hence at least O7(T log? deg(fg)) bit complexity

“Small primes” algorithms
Computations performed modulo small primes p.

But all algorithms still need O7(T log? deg(fg)) operations.

Observe: The trouble is in the degree!
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String Matching

Problem Definition

Given a text t and a pattern p,
find all occurrences of p in t.

@ Big, “classical” problem in computer science

@ Applications to bioinformatics, information retrieval,
databases,...

o Live demo?
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Matching Example

“School” string matching algorithm:

Text
[PIH[1[L[o[L[O]G[I[CA]L]

Pattern

[L[o]G]1]c]



Matching Example

“School” string matching algorithm:

Text
[BIH[1]L]olL]o[G[1[C[A]L]

o[G[1]c]

Pattern




Matching Example

“School” string matching algorithm:

Text
[PIHT 1 ]L]OlL]O[G[1[C[A]L]
olG[1]c]

Pattern




Matching Example

“School” string matching algorithm:

Text
[PIHIITL]O[LO[G[ 1[C[A]L]

olG[1]c]

Pattern




Matching Example

“School” string matching algorithm:

Text
[PIH] I [LTOTETO[G[ I [C]A[L]

[L]OfG] 1 [c]

Pattern




Matching Example

“School” string matching algorithm:

Text
[PIH[1TL]OIL[O[G[ I[C[A]L]

ola|1]c]

Pattern




String Matching

Back to Multiplication

Matching Example

“School” string matching algorithm:

Text
[PIH[1[L[o[L]OlG[I]CIA[L]

[L[o]a]1]c]

Pattern

Running time: O(nm), quadratic in the sizes
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Polynomials String Matching Sumset

String Matching Algorithms

Several great solutions are available:
@ Use a DFA (problem: slow to create)
@ Use a sulffix tree (problem: uses O(n) space)

@ Knuth-Morris-Pratt — O(m + n) worst case
@ Boyer-Moore — O(n + m + |X|) and practical

It looks like there’s nothing left here to do!



Pattern Matching with Wildcards

What if the pattern has don’t-care characters?

And what if the pattern and text are multi-dimensional?
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Pattern Matching with Wildcards

What if the pattern has don’t-care characters?

And what if the pattern and text are multi-dimensional?

Applications
@ Object recognition (computer vision)
@ Computational biology (drug design)
@ Structured text search
@ Music retrieval



Wildcard Pattern Matching

Text
[PIR[E[S[E[N[T]A[T[I[O[N]S]

Pattern
LIel [ ] [7]
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Wildcard Pattern Matching

Preprocessing: Clear extraneous characters from text

Text
[PIR[E[S[E[N[T[A[T]I]O[N]S]

Pattern
LIel [ ] [7]




Wildcard Pattern Matching

Text
[PIRIBISTEIN]TIAT] I [O]N]S]
HEEEN

Pattern




Wildcard Pattern Matching

Text

B :E[sEINTI[A[T]I]O]N]S]
(& [ ¥

Pattern




Wildcard Pattern Matching

Text
[P [RPEFSTEINTTI A [T[ 1 [O[N]S]
LIel [ [ [7]

Pattern

Running time: O (T, T,), quadratic in the number of non-wildcards
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Sparse Wildcard Pattern Matching Algorithms

@ Fischer & Paterson (1974)
@ Cole & Hariharan (2002)

o Clifford & Clifford (2007)

@ Amir, Kapah & Porat (2007)

The fastest algorithms use (sort of)
randomized Kronecker substitution
and dense multiplication
to get O"(T'log® D) complexity
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Back to Multiplication

Polynomials

Sumset

Problem Statement
Given two sets X, Y, the sumset X @ Y
equals {x+y|xeXandyeY}

Related problems:
@ 3SUM (Given a set, do three numbers sum to 07?)
@ X + Y Sorting (Given two sets, sort their sumset)

What is the connection to polynomial multiplication
and string matching?



Problem Connections

@ Consider multiplying (—x> + x) - (x'0 + x® — x0 — x*).

The sumset {1,5} @ {4, 6, 8, 10} encodes the
exponents of the sparse product.
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Problem Connections

@ Consider multiplying (—x> + x) - (x'0 + x® — x0 — x*).

The sumset {1,5} @ {4, 6, 8, 10} encodes the
exponents of the sparse product.

@ Consider searching for .E...T in PRESENTATIONS.

The sumset {1,5} @ {4, 6, 8, 10} encodes the
positions that need to be checked for potential matches.

Also note, we can encode each character as a number
so the product of matching encodings equals 1.

A fast sumset algorithm is critical to both applications!
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Polynomials String Matching Sumset

Sumset Algorithm Overview

The randomized sumset computation works in two phases.

Phase 1: Estimate the size

Reduce the entries modulo

random small primes, increasing in size,
and use dense multiplication

until the result becomes sparse.

Phase 2: Get the sumset
Construct a sparse polynomial whose
coefficients encode sumset inputs,
then use sparse interpolation

to compute the product.




Running Example

The Problem

X = {1238,2520,3631, 4913}
Y ={641,1923,4316}

We want to find X & Y.
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Running Example

The Problem

X = {1238,2520,3631, 4913}
Y = {641, 1923, 4316}

We want to find X & Y.

Step 0: Form sparse polynomials from the exponent sets.

°f= 4913 +Z3630 +12520 +21238

4316 1923 641

Og:z +Z +Zz

The exponents in the product fg form the sumset.



Sumset

Step 1: Estimate structural sparsity

Given
f — 4913 + Z3631 + Z2520 + Z1238

g= Z4316 + Z1923 + Z641

How sparse is the product h = f - g?

Choose primes p =211, p’'=5
d ’
Compute ((f - ) m"dl’)mo P
=274 +33 +372 +2z+2
Less than half-dense? No



Sumset

Step 1: Estimate structural sparsity

Given
f — 4913 + Z3631 + Z2520 + Z1238

g= Z4316 + Z1923 + Z641

How sparse is the product h = f - g?

Choose primes p =211, p’' =11

Compute ((f - g) ™)
=32 +228 + 77 + 24 + 22 + 37

Less than half-dense? No

mod p’
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Step 1: Estimate structural sparsity

Given
f — 4913 + Z3631 + Z2520 + Z1238

g= Z4316 + Z1923 + Z641

How sparse is the product h = f - g?

Choose primes p =211, p’' =17
2] Compute ((f g)m"dl’)
0+ + 5 +2 32+ 22+ 2

Less than half-dense? Yes
Means structural sparsity is close to 8.

mod p’
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Back to Multiplication

First technique: Multiple Reduction and Relaxation

f — 4913 + Z3631 + ZZSZO +Z1238
fmod 211 _ Z199 +Z183 +Z6O +Z44

mod 17
(fmod211) =713 47124710 4,9

What’s going on?
@ First reduce exponents modulo p
@ Now treat that as an ordinary polynomial
@ Then reduce further!
@ Each reduction introduces a factor-2 in the error estimation.



First Tool

d ’
How to compute ((f - g) ™47) P

@ This polynomial never gets very sparse
@ Its degree is linear in the actual structural sparsity
@ So we can use dense polynomial arithmetic!
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Back to Multiplication

Step 2: Compute structural support

Given

f — 4913 + Z3631 + Z2520 + Z1238
g= Z4316 + Z1923 + Z641
#(f-g)~8

What are the exponents of 4 = f - g?

@ Use the same prime p = 211 as before.

mod p
o Compute i = (fm"dp . gmodp
52

- 2Z207 + Z191 + Z156 + Z140 + 2284 + 3268 +792 47

12
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Step 2: Compute structural support

Given
f — 4913 + Z3631 + Z2520 +21238
g = 716 4 71923 4 041

#f-2) =8
What are the exponents of h = f - g?

@ Use the same prime p = 211 as before.
@ Set ¢ > deg(h) = 16000
o Compute f» = S(el + 1)z¢™ed»
= (4913-16000+1)z413 mod 211 1 (3631.16000+1)7703 mod 211 ...
= 40320001z'% + 19808001z'%3 + 78608001z + 58096001z**
@ Compute g, similarly.
@ Compute iy = (f - g2) ™47 mod £?

= 101152002227 + 300640012'%! + 1476640012'%¢ + 127152001240 + 21875200223 + 266592003288 + 683520012°% + 71088001z'%
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Step 2: Compute structural support

Given
f — 4913 + Z3631 + Z2520 + Z1238

g= Z4316 + Z1923 + Z641

#(f-g)~8
What are the exponents of h = f - g?

e p=211, ,¢=16000
o hl = 22207 +Zl91 +Z156 +Z14O + 2284 + 3Z68 +Z52 +212
0 12 = 101152002727 + - .- + 68352001272 + - -

@ _
C1

o Take coefficient ratios:

@ And the sumset is:
1879, 3161, 4272, 4443, 5554, 6836, 7947, 9229
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Second technique: Coefficient ratios

The polynomials f>, g2, h» have their exponents
encoded in the coefficients.

The encoding is additive modulo ¢?:
(al + 1)(bt + 1) mod £* = (a+ b)l + 1

Allows recovering the actual exponents
from the coefficients of the degree-reduced product.

Big idea: turning scalar multiplication into addition
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Second Tool

How to compute iy = f5 - g27

@ This polynomial is kind of sparse.
@ It has huge coefficients!
@ We can use sparse polynomial interpolation!

@ Requirement: Linear-time in the sparsity bound,
poly-logarithmic in the degree.




Polynomials String Matching Sumset Back to Multiplication

What just happened?

We have a randomized algorithm to compute sumset in nearly
linear time, using the tools of dense multiplication and sparse
interpolation.

Completely glossed over:
@ How big do those primes really need to be?
@ What is the failure probability?
@ Which version of sparse interpolation can be used?

Now let’s apply this to sparse polynomial multiplication.



Polynomials String Sumset Back to Multiplication

Running Example

The Problem

f 65x31 36 +20)C13 49 +26x38 12 + 16x20 25
g= 60x16 43 + 78x 41 6 48)623 19

What is the product i = fg?
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Running Example

The Problem
f 65x31 36 +20X13 49 +26x38 12 + 16x20 25
g= 60x16 43 + 78x 41 6 48)623 19

What is the product & = fg?

Overview of approach
[ Reduce to univariate
Compute the structural support
Compute arithmetic support (i.e., the actual exponents)
Compute the coefficients
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Step 0: Substitutions

Given

f 65x31 36 +20x13 49 +26x38 12 + 16x20 25
g= 60x16 43 4 78x%1)5 — 48523y o

Kronecker Substitution

fK :f(Z, Z100) — 20Z4913 + 6513631 + 16Z2520 + 26Z1238
gk = g(Z, Z100) — 6024316 _ 48Z1923 + 78Z641

Note: h completely determined from fxgx.



Polynomials String Matching Sumset Back to Multiplication

Step 1: Compute structural support

Given

fS — Z4913 + Z3631 + Z2520 + Z1238
gs = Z4316 + Z1923 + Z641

#(fs-gs) = 8
What are the exponents of ig = fs - gs?

@ Just compute the sumset
{1238,2520,3631,4913} @ {641, 1923, 4316}

@ (We already did it!)
o = {1879, 3161, 4272, 4443, 5554, 6836, 7947, 9229}



Polynomials String Matching Sumset Back to Multiplication

Step 2: Trim down to the arithmetic support

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6OZ4316 _ 48Z1923 + 78Z64l

supp(fx - gx) € S =

{1879, 3161, 4272, 4443, 5554, 6836, 7947, 9229}

What are the actual exponents of fx - gx?

Choose p =123, ¢g=47 (notep|(g-1))
Compute S mod p = {16,10,17,4,11,5,12,6}

Compute hy,, = (fx - gx) ™*¢? mod ¢
=417'7 + 7710 + 467'% + 2570 + 3174



Polynomials String Matching Sumset Back to Multiplication

Step 2: Trim down to the arithmetic support

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6OZ4316 _ 48Z1923 + 78Z641

supp(fx - gx) € S =
{1879, 3161, 4272, 4443, 5554, 6836, 7947, 9229}

What are the actual exponents of fx - gx?

Choose p =123, ¢g=47 (notep|(g-1))
Compute S mod p = {16,10,17,4,11,5,12, 6}

Compute hy,, = (fx - gx) ™*¢? mod ¢
=417'7 + 7710 + 467'% + 2570 + 3174

Identify support from nonzero terms



Polynomials String Matching Sumset Back to Multiplication

Twist on second tool

How to compute (fx - gx) ™¢” mod ¢?

@ This polynomial is kind of sparse.
@ An advantage: this time we know the support!
@ Use the coefficient-finding step of sparse interpolation!

@ Because pl(g — 1), we can evaluate at pth roots of unity
and solve a transposed Vandermonde system.




Polynomials String Matching Sumset Back to Multiplication

Step 3: Compute the coefficients

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6014316 _ 48Z1923 + 78Z64l
supp(fx - gx) = S’ = {1879, 4272, 4443, 7947, 9229}

What are the coefficients of fx - gx?

Choose p=11, g=23 (notepl(g-1))
Compute S’ mod p = {9, 4, 10, 5, 0}

Compute hy,, = (fx - gx) ™4” mod ¢
= 1479+ 4722 + 1327 + 107 + 4

Group like terms for Chinese Remaindering



Polynomials String Matching Sumset Back to Multiplication

Step 3: Compute the coefficients

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6014316 _ 48Z1923 + 78Z64l
supp(fx - gx) = S’ = {1879, 4272, 4443, 7947, 9229}

What are the coefficients of fx - gx?

Choose p=11, g=67 (notepl(g-1))
Compute S’ mod p = {9, 4, 10, 5, 0}

Compute hy,, = (fx - gx) ™4” mod ¢
= 36210 + 187° + 147° + 457* + 61

Group like terms for Chinese Remaindering



Polynomials String Matching Sumset Back to Multiplication

Step 3: Compute the coefficients

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6014316 _ 48Z1923 + 78Z64l
supp(fx - gx) = S’ = {1879, 4272, 4443, 7947, 9229}

What are the coefficients of fx - gx?

Choose p=11, ¢g=89 (noteplig—1))
Compute §’ mod p = {9,4, 10,5, 0}

Compute hy,, = (fx - gx) ™4” mod ¢
= 33710 4+ 707° + 737 + 867* + 43

Group like terms for Chinese Remaindering



Polynomials String Matching Sumset Back to Multiplication

Step 3: Compute the coefficients

Given

fK =f(Z,ZIOO) — 20Z4913 + 65Z3631 + 16Z2520 + 26Z1238
gk = g(Z,ZlOO) — 6014316 _ 48Z1923 + 78Z64l
supp(fx - gx) = S’ = {1879, 4272, 4443, 7947, 9229}

What are the coefficients of fx - gx?

Choose p=11, ¢g=23,67,89
Compute ' mod p = {9,4, 10, 5, 0}
Compute hy,, = (fx - gx) ™4” mod ¢

Apply CRT and undo the Kronecker map:
h = 3900x*"y7°+1200x27y72 +5070x7%y** +2028x7%y!8 —768x+3y*



Polynomials String Matching Sumset Back to Multiplication

Complexity Overview

Non-toy example

1000 terms, 8 variables, 64-bit coefficients
3 ! 1 ! I | | |
Structural sparsity 10000, arithmetic sparsity 1000

b \ 32-bit exponents




Polynomials String Matching Sumset Back to Multiplication

Complexity Overview

Non-toy example

1000 terms, 8 variables, 64-bit coefficients ,‘32-bit exponents
s ' 1 I I I 1 |

Structural sparsity 10000, arithmetic sparsity 1000

Steps of the algorithm

Estimate structural sparsity (Sumset part 1)
[N N N N DN DR D D D .



Back to Multiplication

Complexity Overview

Non-toy example

1000 terms, 8 variables, 64-bit coefficients ,‘32-bit exponents
s ' 1 I I I 1 |

Structural sparsity 10000, arithmetic sparsity 1000

Steps of the algorithm
Estimate structural sparsity (Sumset part 1)
[N N N N DN DR D D D .
Compute structural support (Sumset part 2)
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Complexity Overview

Non-toy example

1000 terms, 8 variables, 64-bit coefficients ,‘32-bit exponents
s ' 1 I I I 1 |

Structural sparsity 10000, arithmetic sparsity 1000

Steps of the algorithm

Estimate structural sparsity (Sumset part 1)
[N N N N DN DR D D D .

Compute structural support (Sumset part 2)
I
T
Trim to arithmetic support
L ]
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Complexity Overview

Non-toy example

1000 terms, 8 variables, 64-bit coefficients ,‘32-bit exponents
s ' 1 I I I 1 |

Structural sparsity 10000, arithmetic sparsity 1000

Steps of the algorithm
Estimate structural sparsity (Sumset part 1)
[N N N N DN DR D D D .
Compute structural support (Sumset part 2)
I
T

Trim to arithmetic support
L ]

Compute coefficients
I I



Polynomials String Matching Sumset

Back to Multiplication

Multiplication Algorithm Complexity

C = |largest coefficient|
D = max degree
n = # of variables

S = structural sparsity
T = arithmetic sparsity

Theorem

Given f, g € Z[x], our Monte Carlo algorithm computes h = fg with
O (nSlog C + nT log D) bit complexity.

Extends to softly-linear time algorithms for
@ Multivariate polynomials
@ Laurent polynomials
@ Modular rings, finite fields, exact rationals
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Polynomials String Matching Sumset

What about pattern matching?

Sparse Wildcard Pattern Matching can be solved
with fast sparse polynomial multiplication.

Open research questions:
@ Can we solve any practical matching problems faster?

@ Can the approach be made sensitive to the
actual number of matches?

@ Can we work directly on some application
such as music identification?



Polynomials String g Sumset Back to Multiplication

Summary
Three Problems
(x—xy) X (2 —xPy+y*—y)
.E...Tin PRESENTATIONS

{1,5} @ {4,6,8,10}

Two Tools
Dense multiplication Sparse interpolation

And one algorithm to do it all!
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