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Interpolation

General Problem

Determining a function from its values.

Goals

m Find the simplest possible formula.
m Don't take too long.

Necessities

m What type of function? (output type)
m How big can it be? (output size)
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Interpolation

Example

f(X) = (x— 3)197 — 485k — 3)°*

Suppose we can evaluate f(x) at any chosen point.

m Can we find a formula for f(x)?
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Interpolation

Example

f(X) = (x— 3)197 — 485k — 3)°*

Suppose we can evaluate f(x) at any chosen point.

m Can we find a simple formula for f(x)
in a reasonable amount of time?
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Polynomial Interpolation

Dense Methods

Definition (Dense Representation)

f(X) = ap + @ X + X’ + - - + anX",

where n = degf) and ag, a3,...,a, € R

m Studied by Newton (1711), Waring (1779), ...
m Highly efficient implementations available
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Deconstructing the Title
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Polynomial Interpolation
Dense Methods

Definition (Dense Representation)

f(X) = ap + @ X + X’ + - - + anX",

where n = degf) and ag,a3,...,a, € R

Example

For f(x) = (x — 3)197 — 485(x — 3)°4, we will have

f(x) = x107 - 321x%%6 1 5103%!%° - 5359095104 + ...
+4020099274965907985483758515231179267430359014484.9:
—11271306378409087809767686934198601978284589893481!

This is way too big! (twice exponential in the desired size)
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Lacunary Polynomial

Confusing Nomenclature
Lacunary C Supersparse # Sparse

m Default representation in Maple, Mathematica, etc.

m Some things are hard (Plaisted 1977, 1984)

m Some things aren’t: Interpolation, finding low-degree factors
m Some things are unknown!
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Lacunary Polynomial Interpolation

Sparse Methods

Definition (Lacunary Representation)

(09 = buxh + b + - + hox,

whered; <dy <---<ds=nandby,...,bse R\ {0}

m Baron de Prony (1795), Ben-Or & Tiwari (1988),
Kaltofen, Lakshman, Wiley, Lee, Lobo, ...

m Need to choose evaluation points
m R must have a high-order element and a fast logarithm.
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Lacunary Polynomial Interpolation

Sparse Methods

Definition (Lacunary Representation)

f(X) = bix% + box® + - - - + bex®s,
whered; <dy <---<ds=nandby,...,bse R\ {0}

Example

If f(x) = (x — 3)107 — 485 — 3)>*,
this helps iff we know the sparsest shift 3,
since f(x + 3) = x197 — 485¢>* is 2-sparse.
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Shifted-Lacunary Polynomial Interpolation

Definition (Shifted-Lacunary Representation)

f(X) = ci(X— @) + (X — @)% + - - - + C(X — @),

where g < --- < & =nand tis minimal for any «

m This is our problem.

m Can be reduced to finding the sparsest shift a.
m We restrict the domain to Q[X].

m No previous polynomial-time algorithm known.
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Complexity of Shifted-Lacunary Polynomial Interpolation

We give an algorithm with
output-sensitive polynomial-time complexity,
specifically, bit complexity polynomial in:

m Number of nonzero terms t
m Logarithm of the degree n
m Size of the coefficients cy,...,C
m Size of the sparsest shift
Black box calls are assumed to have constant cost.
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Computing the Sparsest Shift

m Borodin & Tiwari (1991)
Compute sparsest shift from evaluation points (open)
m Grigoriev & Karpinski (1993)
Compute sparsest shift from a black-box function.
State need for complexity not polynomial in n
m Lakshman & Saunders (1996)
Compute sparsest shift from dense representation
m Giesbrecht, Kaltofen, Lee (2003)
Current best results (deterministic & probabilistic)
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Complexity Putting it Together

Background

Uniqueness and Rationality of Sparsest Shift

Theorem (Lakshman & Saunders (1996))

If the degree is at least twice the sparsity,
then the sparsest shift is unique and rational.

Example

f(X) = (x— 3)197 - 485k — 3)°*

= 3 is the only shift with < 54 terms

Condition not satisfied means polynomial is dense.
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Black Box Model

Arbitrary evaluations will usually be very large:

Example
f(X) = (x—3)1%7—-485K-3)>*
f(1) = -162259276829222100374855109050368

To control evaluation size, use modular arithmetic:

The “Modular Black-Box”

peN,feZ I f(#) modp

f() € Q¥
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Modular Reduction

Modular-Reduced Polynomial

Definition
f(X): C]_(X—a’)el dtooodh Ct(x_a,)q
v v v
fp(x) = (Cl mod p)(x — ap)el mod @*1)+ 000 +(Ct mod p)(x _ ap)Q mod le),

where ap = @ modp.

m f(0) modp = fp(¢ modp) whenever 6 # @ modp
(Fermat's Little Theorem)

m op is at least a t-sparse shift of f,(X)
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Modular Reduction

Pretty Picture #1

flL 1 T I 1 T 1

p-1 SN fo(X)
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Modular Reduction

Pretty Picture #2

m Red squares indicate nonzero terms in the polynomial.
m The reel is the unit circle in Z.
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Algorithm Overview

Outline of Algorithm

Input: Bound B on the bit length of the
lacunary-shifted representation
Choose a prime p with p € O(B°W)

Evaluate f(1),...,f(p—1) modp
to attempt to interpolate fy(X).

Use a dense sparsest shift method to compute
Repeat Steps 1-3 enough times to recover «
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Algorithm Overview

Example

Unknown Polynomial in Q[X]
f(x) = (x — 3)107 — 485 — 3)%4

Choose a prime p with p € O(B°D)

Step 1
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Algorithm Overview

Example

Unknown Polynomial in Q[X]
f(x) = (x — 3)107 — 485 — 3)54

Choose a prime p with p € O(B°)

Evaluate f(1),...,f(p— 1) modp
to attempt to interpolate fp(X)

Step 2
f(2),...,f(p—1) modp=109,0,0,2,5,2,5,10,3

fo(X) = X7+ x8 + 235 + 93 + 2x% + 8x + 9
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Algorithm Overview

Example

Unknown Polynomial in Q[X]
f(x) = (x — 3)107 — 485 — 3)54

Choose a prime p with p € O(B°)

Evaluate f(1),...,f(p— 1) modp
to attempt to interpolate fp(X)

Use a dense sparsest shift method to compute a

Step 3
fo(x) = (x— 3)” + 10(x — 3)* mod p
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Algorithm Overview

Example

Unknown Polynomial in Q[X]
f(x) = (x — 3)107 — 485 — 3)%4

Choose a prime p with p € O(B°D)
Evaluate f(1),...,f(p— 1) modp
to attempt to interpolate fp(X)

Use a dense sparsest shift method to compute ay
Repeat Steps 1-3 enough times to recover «

Step 4

@11=3, a13=3, a17=3,

a=3
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Primes that Cause Failures

Types of Failures

IN CASE OF FAILURE . .
BREAK GLASS Two categories of failures:

m fp(X) is not computed correctly

m The sparsest shift of fy(X) is not ap
Equivalent to degfp(x) < 2t — 1.

Next we develop sufficient conditions on p to avoid failure.
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Exponents Vanish

fo(X) computed incorrectly

f(x) = 10x — 1)2 + 8(x — 1)
p=7
200 = 3(x — 1)° + (x— 1)
f(1) mod 7= 0 # 3 = f;(1)

Condition: (p—1)t maxl, e} -e- e - &
Test: Constant coeff. of computed fy(X) equals
constant coeff. of f(X) modulo p
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Exponents Too Small

Sparsest shift of f;(X) is not a;

f(X) = —4(x— 2)!*° + 14(x - 2)°° + 3
p=13

9(x—2)t + (x—2)%°+3
(x—4)2+12

f13(x)

Condition: (p-1)t e(e - 1)(&-2)--- (& — (2t - 2))
Test: degfp(x) >2B-1>2t-1
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Exponents Collide

Sparsest shift of f(X) is not ap

f(X) = 4(x — 1)°° + 2(x — 121 + 7(x — 1)*° + 20
p=11

Ax-1° +2x- 1)t +7(x-1)°+9

2(x-1)+9

2(x—2)

f11(x)

Condition: (p-1)1 (e -el)(&— &) - (& — €&-1)
Test: degfp(x) >2B-1>2t-1
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Primes that Cause Failures

Coefficients Vanish

Sparsest shift of f(X) is not ap

f(X) = 69(x — 5)*2 - 12(x - 5>+ 4
p=23

0(x - 5%+ 11(x - 5)* + 4
11(x—5) + 4
11(x - 13)

f23(X)

Condition: p1 ¢
Test: degfp(x) >2B-1>2t-1
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Sufficient Conditions

Definition

=1 =1 2t-2 )
C=maxerl)-| |ea-]| |@-e)-[ J@-)) <2*
i=2 i=1 i=0

Sufficient Conditions for Success

LR el
m(p-1)¢1C

Approach

Choose primes p = gk + 1, for distinct primes q.
ql(p-1).s0qiC= (p-1)1C.
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Choosing Primes Deterministically

Let qy,..., Ok be the first k primes, for k € O7(B?).
Let p; be the smallest prime s.t. p; = 1 modg;.
Set P = {p1, P2, ..., Pk}

Facts
m [P € QB?

m p € O(gP?) = O°(BY) (Linnik, Heath-Brown '92)
m With ERH, pi € O(¢?) = O7(B*) (Bach & Sorenson '96)
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Algorithms

Probabilistic Algorithm

Choose a random prime ¢ € O(B? log B).
Choose random K's less than g until
a prime p = gk + 1 is found.

We use Rousselet (1988) to show the density of primes
of this type in the range [, ¢] is high,
once q is larger than some unknown constant.

For this version, p; € O(?) € O(B%).
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Heuristic

Our analysis has been rather crude.
In fact, “most” primes will be good.

The following works well in practice:

Choose a random prime p in the range [4B, 8B].
That’s it!
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Complexity of Deterministic Algorithm

m Step 3 (computing sparsest shift of fy(x)) dominates.

Bit Complexity
0(B8(logB)**log logB)

Factor | Source
5.5 | Bounds on Linnik's constant
2 | Need (p—-1) 1 C and logC € O(B?)
7 | Deterministic sparsest shift algorithm

This gives 77; one more factor from repeating O(B) times.
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Complexity of Probabilistic Algorithm

Bit Complexity
O~(Bl7)

Factor | Source
2 | Bounds on Linnik’s constant using Rousselet
2 | Need (p—- 1) 1 C and logC € O(B?)
4 | Probabilistic sparsest shift algorithm

Again, one more factor from O(B) iterations.
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Complexity of Heuristic

Bit Complexity
o (B°)

This method gives us p € O(B) rather than
O(B?) for probabilistic or O(BY) for deterministic.

If we know a € O(B), then we can just iterate once,
for total cost O°(B?).
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Summary of Sparsest Shift Computation Techniques

Deterministic Algorithm

Actual complexity only O7(B?°) unless ERH is false.

Probabilistic Algorithm

Always correct and (provably) probably much faster.

Heuristic

Faster in practice and provably never wrong, but might not
terminate
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Interpolation

Once « is known, we can construct a modular black box
for evaluating f (X + ).

Then use lacunary interpolation along the lines of
Kaltofen, Lakshman, & Wiley (1990) and
Avendarfio, Krick, & Pacetti (2006).
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e
Conclusions

m Shifted-lacunary interpolation can be performed
in polynomial time, for rational polynomials
given by a modular black box.

m How to apply these techniques to
other problems on lacunary polynomials?

m What about domains other than Q[x]?
m What about multivariate rational polynomials?
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