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Abstract. We consider the problem of finding a sparse multiple of a
polynomial. Given f ∈ F[x] of degree d, and a desired sparsity t, our goal
is to determine if there exists a multiple h ∈ F[x] of f such that h has
at most t non-zero terms, and if so, to find such an h. When F = Q and
t is constant, we give a polynomial-time algorithm in d and the size of
coefficients in h. When F is a finite field, we show that the problem is
at least as hard as determining the multiplicative order of elements in
an extension field of F (a problem thought to have complexity similar to
that of factoring integers), and this lower bound is tight when t = 2.†

1 Introduction

Let F be a field, which will later be specified either to be the rational numbers
(Q) or a finite field with q elements (Fq). We say a polynomial h ∈ F[x] is t-sparse
(or has sparsity t) if it has at most t nonzero coefficients in the standard power
basis; that is, h can be written in the form

h = h1x
d1 + h2x

d2 + · · ·+ htx
dt for h1, . . . , ht ∈ F and d1, . . . , dt ∈ N. (1.1)

Sparse polynomials have a compact representation as a sequence of coefficient-
degree pairs (h1, d1), . . . , (ht, dt), which allow representation and manipulation
of very high degree polynomials. Let f ∈ F[x] have degree d. We examine the
computation a t-sparse multiple of f . That is, we wish to determine if there
exist g, h ∈ F[x] such that fg = h and h has prescribed sparsity t, and if so, to
find such an h. We do not attempt to find g, as it may have a superpolynomial
number of terms even though h has a compact representation (see Theorem 3.6).

Sparse multiples over finite fields have cryptographic applications. Their com-
putation is used in correlation attacks on LFSR-based stream ciphers (Aimani
and von zur Gathen, 2007; Didier and Laigle-Chapuy, 2007). The security of the
TCHo cryptosystem is also based on the conjectured computational hardness of
sparsest multiple computation over F2[x] (Aumasson et al., 2007); our results
provide further evidence that this is in fact a computationally difficult problem.
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Sparse multiples can be useful for extension field arithmetic (Brent and Zim-
mermann, 2003) and designing interleavers for error-correcting codes (Sadjad-
pour et al., 2001). The linear algebra formulation in Section 2 relates to finding
the minimum distance of a binary linear code (Berlekamp et al., 1978; Vardy,
1997) as well as “sparsifications” of linear systems (Egner and Minkwitz, 1998).

One of our original motivations was to understand the complexity of sparse
polynomial implicitization over Q or R: Given a list of zeros of a (typically mul-
tivariate) function, we wish find a sparse polynomial with those zeros (see, e.g.,
Emiris and Kotsireas (2005)). Our work here can be thought of as a univariate
version of implicitization, though a reduction from the multi- to univariate case
via Kronecker-like substitutions seems quite feasible.

In general, we assume that the desired sparsity t is a constant. This seems
reasonable given that over a finite field, even for t = 2, the problem is probably
computationally hard (Theorem 5.1). In fact, we have reason to conjecture that
the problem is intractable over Q or Fq when t is a parameter. Our algorithms
are exponential in t but polynomial in the other input parameters when t ∈ O(1).

Over Q[x], the analysis must consider coefficient size, and we will count
machine word operations in our algorithms to account for coefficient growth. We
follow the conventions of Lenstra (1999) and define the height of a polynomial:
Let f ∈ Q[x] and r ∈ Q the least positive rational number such that rf ∈ Z[x]. If
rf =

∑
i aix

di with each ai ∈ Z, then the height of f , written H(f), is maxi |ai|.
We examine variants of the sparse multiple problem over Fq and Q. Since

every polynomial in Fq has a 2-sparse multiple of high degree, given f ∈ Fq[x]
and n ∈ N we consider the problem of finding a t-sparse multiple of f with degree
at most n. For input f ∈ Q[x] of degree d, we consider algorithms which seek
t-sparse multiples of height bounded above by an additional input value c ∈ N.
We present algorithms requiring time polynomial in d and log c.

The remainder of the paper is structured as follows.

In Section 2, we consider the straightforward linear algebra formulation of
the sparse multiple problem. This is useful over Q[x] once a bound on the output
degree is derived, and also allows us to bound the output size. In addition, it
connects our problems with related NP-complete coding theory problems.

In Section 3 we consider the problem of finding the least-degree binomial
multiple of a rational polynomial. A polynomial-time algorithm in the size of
the input is given which completely resolves the question in this case. This
works despite the fact that we show polynomials with binomial multiples whose
degrees and heights are both exponential in the input size!

In Section 4 we consider the more general problem of finding a t-sparse mul-
tiple of an input f ∈ Q[x] without repeated cyclotomic factors. We present a
polynomial-time algorithm in the size of f and a given height bound.

Section 5 shows that, even for t = 2, finding a t-sparse multiple of a polyno-
mial f ∈ Fq[x] is at least as hard as finding multiplicative orders in an extension
of Fq (a problem thought to be computationally difficult). This lower bound is
shown to be tight for binomial multiples.

Open questions and avenues for future research are discussed in Section 6.



2 Linear Algebra Formulation

The sparsest multiple problem can be formulated using linear algebra. This re-
quires specifying bounds on degree, height and sparsity; later some of these
parameters will be otherwise determined. This approach also highlights the con-
nection to some problems from coding theory. We exhibit a randomized algo-
rithm for finding a t-sparse multiple of a rational polynomial of degree d, given
bounds c and n on the height and degree of the multiple respectively. When
t ∈ O(1), the algorithm runs in time polynomial in n and logH(f) and returns
the desired output with high probability. We also conjecture the intractability
of some of these problems, based on similar problems in coding theory. Finally,
we show that the problem of finding the sparsest vector in an integer lattice is
NP-complete, which was conjectured by Egner and Minkwitz (1998).

Suppose R is a principal ideal domain, and basic ring operations have unit
cost. Let f ∈ R[x] have degree d and n ∈ N be given. Suppose g, h ∈ R[x]

have degrees n − d and n respectively, with f =
∑d

0 fix
i, g =

∑n−d
0 gix

i and
h =

∑n
0 hix

i. The coefficients in equation fg = h satisfy the linear system (2.1).

f0

f1
. . .

...
. . . f0

fd
. . . f1
. . .

...
fd


︸ ︷︷ ︸

Af,n


g0
g1
...

gn−d


︸ ︷︷ ︸

vg

=



h0
h1

...

hn


︸ ︷︷ ︸
vh

(2.1)


1 α1 · · · αn1
1 α2 · · · αn2
...

...
...

...
1 αd · · · αnd


︸ ︷︷ ︸
An(α1,...,αd)



h0
h1

...

hn


= 0 (2.2)

Thus, a multiple of f of degree at most n and sparsity at most t corresponds
to a vector with at most t nonzero coefficients (i.e., a t-sparse vector) in the
linear span of Af,n. If f ∈ R[x] is squarefree and has roots {α1, . . . , αd}, possibly
over a finite extension of R, then (2.2) also holds. Thus t-sparse multiples of a
squarefree f correspond to t-sparse R-vectors in the nullspace of An(α1, . . . , αd).

2.1 Finding Bounded-Height Bounded-Degree Sparse Multiples

We now present an algorithm to find the sparsest bounded-degree, bounded-
height multiple h ∈ Q[x] of an input f ∈ Q[x]. Since H is invariant under
scaling, we may assume that f, g, h ∈ Z[x] .

The basic idea is the following: Having fixed the positions at which the mul-
tiple h has nonzero coefficients, finding low-height multiple is reduced to finding
the nonzero vector with smallest l∞ norm in the image of a small lattice.

Let I = {i1, . . . , it} be a t-subset of {0, . . . , n}, and AIf,n ∈ Z(n+1−t)×(n−d+1)

the matrix Af,n with rows i1, . . . , it removed. Denote by BIf,n ∈ Zt×(n−d+1) the
matrix consisting of the removed rows i1, . . . , it of the matrix Af,n. Existence of
a t-sparse multiple h = hi1x

i1 + hi2x
i2 + · · ·+ hitx

it of input f is equivalent to
the existence of a vector vg such that AIf,n ·vg = 0 and BIf,n ·vg = [hi1 , . . . , hit ]

T .



Algorithm 2.1: Bounded-Degree Bounded-Height Sparsest Multiple

Input: f ∈ Z[x] and t, n, c ∈ N
Output: A t-sparse multiple of f with deg(h) ≤ n and H(h) ≤ c, or “NONE”

1 for s = 2, 3, . . . , t do
2 foreach s-subset I = (1, i2, . . . , is) of {1, 2, . . . , n} do
3 Compute matrices AI

f,n and BI
f,n as defined above

4 if AI
f,n does not have full column rank then

5 Compute matrix CI
f,n whose columns span the nullspace of AI

f,n

6 h← shortest l∞ vector in the column lattice of BI
f,n · CI

f,n

7 if l∞(h) ≤ c then return h1 + h2x
i2 + · · ·+ htx

it

8 return “NONE”

Now let CIf,n be a matrix whose columns span the nullspace of the matrix

AIf,n. Since Af,n has full column rank, the nullspace of AIf,n has dimension s ≤ t,
and hence CIf,n ∈ Z(n−d+1)×s. Thus, a t-sparse multiple h = hi1x

i1 + · · ·+hitx
it

of f exists if and only if there exists a v ∈ Zt such that

BIf,n · CIf,n · v = [hi1 , . . . , hit ]
T . (2.3)

Note that BIf,n · CIf,n ∈ Zt×s.
Algorithm 2.1 outlines this approach. The following lemma uses the Smith

normal form to show that Step 5 can be computed efficiently.

Lemma 2.1. Given T ∈ Zk×` with k ≥ ` and nullspace of dimension s, we can
compute a V ∈ Zs×` such that the image of V equals the nullspace of T . The
algorithm requires O(k`2s log ‖T ‖) bit operations (ignoring logarithmic factors).

Lemma 2.2 shows that Step 6 can be performed efficiently. The proof employs
the algorithm of (Ajtai et al., 2001) to find all shortest vectors in the l2 norm
within an approximation factor of

√
t. The shortest l∞ vector must be among

the computed set.

Lemma 2.2. The shortest l∞ vector in the image of a matrix U ∈ Zt×t can be

computed by a randomized algorithm using 2O(t log t) · ‖U ‖O(1)
bit operations.

The correctness and efficiency of Algorithm 2.1 can be summarized as follows.

Theorem 2.3. Algorithm 2.1 correctly computes a t-sparse multiple h of f of
degree n and height c, if it exists, with (logH(f))O(1) · nO(t) · 2O(t log t) bit oper-
ations. The sparsity s of h is minimal over all multiples with degree less than n
and height less than c, and deg h is minimal over all such s-sparse multiples.

2.2 Relationship to NP-hard Problems

Note that the above algorithms require time exponential in t, and are only
polynomial-time for constant t. It is natural to ask whether there are efficient
algorithms which require time polynomial in t. We conjecture this problem is



NP-complete, and point out two relatively recent results of Vardy (1997) and
Guruswami and Vardy (2005) on related problems that are known to be hard.

The formulation (2.2) seeks the sparsest vector in the nullspace of a (struc-
tured) matrix. For an unstructured matrix over finite fields, this is the problem
of finding the minimum distance of a linear code, shown by Vardy (1997) to be
NP-complete. The same problem over integers translates into finding the spars-
est vector in an integer lattice. It was posed as an open problem in Egner and
Minkwitz (1998). Techniques similar to Vardy (1997) prove that this problem is
also NP-complete over the integers:

Theorem 2.4. The problem SparseLatticeVector of computing the vector with
the least Hamming weight in an integer lattice specified by its basis is NPcomplete.

Of course, the problem may be easier for structured matrices as in (2.2)
However, Guruswami and Vardy (2005) show that maximum likelihood decoding
of cyclic codes, which seeks sparse solutions to systems of equations of similar
structure to (2.2), is also NP-complete. They do require the freedom to choose
a right-hand-side vector, whereas we insist on a sparse vector in the nullspace.
While these two results certainly do not prove that the bounded-degree sparsest
multiple problem is NP-complete, they support our conjecture that it is.

3 Binomial Multiples over Q
In this section we completely solve the problem of determining if there exists a
binomial multiple of a rational input polynomial (i.e., of sparsity t = 2). That is,
given input f ∈ Q[x] of degree d, we determine if there exists a binomial multiple
h = xm − a ∈ Q[x] of f , and if so, find such an h with minimal degree. The
constant coefficient a will be given as a pair (r, e) ∈ Q×N representing re ∈ Q.
The algorithm requires a number of bit operations which is polynomial in d and
logH(f). No a priori bounds on the degree or height of h are required. We show
that m may be exponential in d, and log a may be exponential in logH(f), and
give a family of polynomials with these properties.

Algorithm 3.1 begins by factoring the given polynomial f ∈ Q[x] into irre-
ducible factors (using, e.g., the algorithm of Lenstra et al. (1982)). We then show
how to find a binomial multiple of each irreducible factor, and finally provide a
combining strategy for the different multiples.

The following theorem of Risman (1976) characterizes binomial multiples of
irreducible polynomials. Let φ be Euler’s totient function, the number of positive
integers less than or equal to n which are coprime to n.

Fact 3.1 (Risman (1976), Corollary 2.2). Let f ∈ Q[x] be irreducible of
degree d. Suppose the least-degree binomial multiple (if one exists) is of degree
m. Then there exist n, t ∈ N with n | d and φ(t) | d such that m = n · t.

Combining Fact 3.1 with number-theoretic bounds from Rosser and Schoen-
feld (1962), we obtain the following explicit upper bound on the maximum degree
of a binomial multiple of an irreducible polynomial.

Theorem 3.2. Let f ∈ Q[x] be irreducible of degree d. If a binomial multiple of
f exists, and has minimal degree m, then m ≤ d · (d3d ln ln de+ 7).



Algorithm 3.1: Lowest degree Binomial Multiple of a Rational Polynomial

Input: f ∈ Q[x]
Output: The lowest degree binomial multiple h ∈ Q[x] of f , or “NONE”

1 Factor f into irreducible factors: f = xbf1f2 · · · fu
2 if f is not squarefree then return “NONE”
3 for i = 1, 2, 3, . . . , u do

4 mi ← least k ∈ {di = deg fi, . . . , (d3di ln ln die+ 7)di} s.t. xk rem fi ∈ Q
5 if no such mi is found then return “NONE”
6 else ri ← xmi rem fi

7 m← lcm(m1, . . . ,mu)
8 foreach 2-subset {i, j} ⊆ {1, . . . , u} do
9 if |ri |mj 6= |rj |mi then return “NONE”

10 else if sign(r
m/mi
i ) 6= sign(r

m/mj

j ) then m← 2 · lcm(m1, . . . ,mu)

11 return xb(xm − rm/m1
1 ), with r1 and m/m1 given separately

The above theorem ensures that for an irreducible fi, Step 4 of Algorithm 3.1
computes the least-degree binomial multiple xmi − ri if it exists, and otherwise
correctly reports failure. It clearly runs in polynomial time.

Assume the factorization of f is as computed in Step 1, and moreover f is
squarefree (otherwise it cannot have a binomial multiple). If any factor does not
have a binomial multiple, neither can the product. If every irreducible factor
does have a binomial multiple, Step 4 computes the one with the least degree.
The following relates the degrees of the minimal binomial multiple of the input
polynomial to those of its irreducible factors.

Lemma 3.3. Let f ∈ Q[x] be such that f = f1 · · · fu ∈ Q[x] for distinct, irre-
ducible f1, . . . , fu ∈ Q[x]. Let fi | (xmi−ri) for minimal mi ∈ N and ri ∈ Q, and
let f | (xm − r) for r ∈ Q. Then lcm(m1, . . . ,mu) |m.

The key step in the proof of Lemma 3.3 is showing that if any mi does
not divide m, then a binomial multiple of fi with degree (m mod mi) can be
constructed, contradicting the minimality of mi.

Lemma 3.4. For a polynomial f ∈ Q[x] factored into distinct irreducible factors
f = f1f2 . . . fu, with fi | (xmi − ri) for ri ∈ Q and minimal such mi, a binomial
multiple of f exists if and only if |ri |mj = |rj |mi for every pair 1 ≤ i, j ≤ u. If

a binomial multiple exists, the least-degree binomial multiple of f is xm− rm/mi

i

such that m either equals the least common multiple of the mi or twice that
number. It can be efficiently checked which of these cases holds.

The following comes directly from the previous lemma and the fact that
Algorithm 3.1 performs polynomially many arithmetic operations.

Theorem 3.5. Given a polynomial f ∈ Q[x], Algorithm 3.1 outputs the least-

degree binomial multiple xm−rm/mi

i (with ri and m/mi output separately) if one
exists or correctly reports the lack of a binomial multiple otherwise. Furthermore,
it runs in deterministic time (d+H(f))O(1).



The constant coefficient of the binomial multiple cannot be output in stan-
dard form, but must remain an unevaluated power. Polynomials exist whose
minimal binomial multiples have exponentially sized degrees and heights.

Theorem 3.6. For any d ≥ 841 there exists a polynomial f ∈ Z[x] of degree at
most d log d and height H(f) ≤ exp(2d log d) whose minimal binomial multiple

xm − a is such that m > exp(
√
d) and H(a) > 2exp(

√
d).

4 t-sparse Multiples over Q
We examine the problem of computing t-sparse multiples of rational polynomials,
for any fixed positive integer t. As with other types of polynomial computations,
it seems that cyclotomic polynomials behave quite differently from cyclotomic-
free ones. Accordingly, we first examine the case that our input polynomial
f consists only of cyclotomic or cyclotomic-free factors. Then we see how to
combine them, in the case that none of the cyclotomic factors are repeated.

Specifically, we will show that, given any rational polynomial f which does
not have repeated cyclotomic factors, and a height bound c ∈ N, we can compute
a sparsest multiple of f with height at most c, or conclude that none exists, in
time polynomial in the size of f and log c (but exponential in t).

First, notice that multiplying a polynomial by a power of x does not affect
the sparsity, and so without loss of generality we may assume all polynomials
are relatively prime to x; we call such polynomials non-original since they do
not pass through the origin.

4.1 The Cyclotomic Case

Suppose the input polynomial f is a product of cyclotomic factors, and write
the complete factorization of f as

f = Φeii1 · Φ
e2
i2
· · ·Φekik . (4.1)

Now let m = lcm(i1, . . . , ik). Then m is the least integer such that Φi1 · · ·Φik
divides xm − 1. Let ` = maxi ei, the maximum multiplicity of any factor of f .
This means that (xm − 1)` is an (`+ 1)-sparse multiple of f . To prove that this
is in fact a sparsest multiple of f , we first require the following simple lemma.
Here and for the remainder, for a univariate polynomial f ∈ F[x], we denote by
f ′ the first derivative with respect to x, that is, d

dxf .

Lemma 4.1. Let h ∈ Q[x] be a t-sparse and non-original polynomial, and write
h = a1 + a2x

d2 + · · ·+ atx
dt . Assume the complete factorization of h over Q[x]

is h = ath
e1
1 · · ·h

ek
k , with each hi monic and irreducible. Then maxi ei ≤ t− 1,

An immediate consequence is the following:

Corollary 4.2. Let f ∈ Q[x] be a product of cyclotomic factors, written as in
(4.1). Then

h = (xlcm(i1,...,ik) − 1)maxi ei

is a sparsest multiple of f .



4.2 The Cyclotomic-Free Case

We say a polynomial f ∈ Q[x] is cyclotomic-free if it contains no cyclotomic fac-
tors. Here we will show that a sparsest multiple of a cyclotomic-free polynomial
must have degree bounded by a polynomial in the size of the input and output.

First we need the following elementary lemma.

Lemma 4.3. Suppose f, h ∈ Q[x] with f irreducible, and k is a positive integer.
Then fk|h if and only if f |h and fk−1|h′.

The following technical lemma provides the basis for our degree bound on
the sparsest multiple of a non-cyclotomic polynomial. The proof, omitted, is by
induction on k, using the “gap theorem” from (Lenstra, 1999) in the base case.

Lemma 4.4. Let f, h1, h2, . . . , h` ∈ Q[x] be non-original polynomials, where f
is irreducible and non-cyclotomic with degree d, and each hi satisfies deg hi ≤ u
and H(hi) ≤ c. Also let k,m1,m2, . . . ,m` be positive integers such that

fk|(h1xm1 + h2x
m2 + · · ·+ h`x

m`).

Then fk divides each hi whenever every “gap length”, for 1 ≤ i < `, satisfies

mi+1 −mi − deg hi ≥
1

2
d · ln3(3d) · ln

(
uk−1c (t− 1)

)
. (4.2)

Our main tool in proving that Algorithm 2.1 is useful for computing the
sparsest multiple of a rational polynomial, given only a bound c on the height,
in polynomial time in the size of f and log c, is the following degree bound on
the sparsest height-bounded multiple of a rational polynomial. The proof follows
from Lemma 4.4, observing that if the degree of h is sufficiently large compared
to the sparsity t, then h must have at least one large gap.

Theorem 4.5. Let f ∈ Q[x] with deg f = d be cyclotomic-free, and let t, c ∈ N
such that f has a nonzero t-sparse multiple with height at most c. Denote by n
the smallest degree of any such multiple of f . Then n satisfies

n ≤ 2(t− 1)B lnB, (4.3)

where B is the formula polynomially bounded by d, log c, and log t defined as

B =
1

2
d2 · ln3(3d) · ln

(
ĉ (t− 1)

d
)
, (4.4)

and ĉ = max(c, 35).

In order to compute the sparsest multiple of a rational polynomial with no
cyclotomic or repeated factors, we can therefore simply call Algorithm 2.1 with
the given height bound c and degree bound as specified in (4.3).

4.3 Handling Cyclotomic Factors

Suppose f is any non-original rational polynomial with no repeated cyclotomic
factors. Factor f as f = fC ·fD, where fC is a squarefree product of cyclotomics
and fD is cyclotomic-free. Write the factorization of fC as fC = Φi1 · · ·Φik ,
where Φn is the nth cyclotomic polynomial. Since every ith root of unity is also a



Algorithm 4.1: Rational Sparsest Multiple

Input: Bounds t, c ∈ N and f ∈ Q[x] a non-original polynomial of degree d with
no repeated cyclotomic factors

Output: t-sparse multiple h of f with H(h) ≤ c, or “NONE”
1 Factor f as f = Φi1 · Φi2 · · ·Φik · fD, where fD is cyclotomic-free
2 n← degree bound from (4.3)

3 ĥ← sparsest multiple of fD with H(ĥ) ≤ c and deg ĥ ≤ n, using Algorithm 2.1

4 h̃← sparsest multiple of f with H(h) ≤ c and deg h ≤ n, using Algorithm 2.1

5 if ĥ =“NONE”and h̃ =“NONE” then return “NONE”

6 else if ĥ =“NONE”or sparsity(h̃) ≤ 2 · sparsity(ĥ) then return h̃
7 m← lcm{i1, i2, . . . , ik}
8 return ĥ · (xm − 1)

(mi)th root of unity for any m ∈ N, fC must divide the binomial xlcm{i1,...,ik}−1,
which is in fact the sparsest multiple of fC and clearly has minimal height.

Then we will show that the sparsest height-bounded multiple of f is either of
small degree, or is equal to the sparsest height-bounded multiple of fD times the
binomial multiple of fC specified above. Algorithm 4.1 uses this fact to compute
the sparsest multiple of any such f .

Theorem 4.6. Let f ∈ Q[x] be a degree-d non-original polynomial with no re-
peated cyclotomic factors. Given f and integers c and t, Algorithm 4.1 correctly
computes a t-sparse multiple h of f satisfying H(h) ≤ c, if one exists. The spar-
sity of h will be minimal over all multiples with height at most c. The cost of the
algorithm is (d log c)O(t) · 2O(t log t) · (logH(f))O(1).

The main idea in the proof is that, if the sparsest multiple of f has very high
degree, then it can be written as h = h1 + h2x

m, and both h1 and h2 must be
sparse multiples of fD, the cyclotomic-free part of f .

4.4 An Example

Say we want to find a sparsest multiple of the following polynomial over Q[x].

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x+ 4.

First factor using (Lenstra et al., 1982) and identify cyclotomic factors:

f = (x2 − x+ 1)︸ ︷︷ ︸
Φ6

· (x4 − x3 + x2 − x+ 1)︸ ︷︷ ︸
Φ10

· (x4 − 3x3 + x2 + 6x+ 4)︸ ︷︷ ︸
fD

.

Next, we calculate a degree bound from Theorem 4.5. Unfortunately, this
bound is not very tight (despite being polynomial in the output size); using
t = 10, c = 1000, and f given above, the bound is n ≤ 11 195 728. So for this
example, we will use the smaller (but artificial) bound of n ≤ 20.

The next step is to calculate the sparsest multiples of both fD and f with
degree at most 20 and height at most 1000. Using Algorithm 2.1, these are

ĥ = x12 + 259x6 + 64.

h̃ = x11 − 3x10 + 12x8 − 9x7 + 10x6 − 4x5 + 9x4 + 3x3 + 8.



Since the sparsity of ĥ is less than half that of h̃, a sparsest multiple is

h = (x12 +259x6 +64) ·(xlcm(6,10)−1) = x42 +259x36 +64x30−x12−259x6−64.

5 Sparse Multiples over Fq

We prove that for any constant t, finding the minimal degree t-sparse multiple
of an f ∈ Fq[x] is harder than finding orders of elements in Fqe . Order finding
is reducible to integer factorization and to discrete logarithm, but reductions
in the other direction are not known for finite fields (Adleman and McCurley,
1994). However, a fast algorithm for order finding in finite fields would give an
efficient procedure for computing primitive elements, “one of the most important
unsolved and notoriously hard problems in the computational theory of finite
fields” (von zur Gathen and Shparlinski, 1999).

Formal problem definitions are as follows:

SpMul
(t)
Fq

(f, n): Given a polynomial f ∈ Fq[x] and an integer n ∈ N, determine

if there exists a (nonzero) 2-sparse multiple h ∈ Fq[x] of f with deg h ≤ n.
OrderFqe

(a, n): Given an element a ∈ F∗qe and an integer n < qe, determine if
there exists a positive integer m ≤ n such that am = 1.

The problem OrderFqe
(a, n) is well-studied (see for instance Meijer (1996)),

and has been used as a primitive in several cryptographic schemes. Note that an
algorithm to solve OrderFqe

(a, n) will allow us to determine the multiplicative
order of any a ∈ F∗qe (the smallest nonzero m such that am = 1) with essentially
the same cost (up to a factor of O(e log q)) by using binary search.

The reduction from OrderFqe
(a, n) to SpMul

(t)
Fq

(f, n) works as follows: Given

an instance of OrderFqe
(a, n), we first check if the order oa of a is less than t

by brute-force. Otherwise, we construct the minimal polynomial gai for each
a0, a1, a2, . . . , at−1. We only keep distinct gai , and call the product of these

distinct polynomials fa,t. We then run the SpMul
(t)
Fq

(f, n) subroutine to search
for the existence of a degree n, t-sparse multiple of the polynomial fa,t.

Theorem 5.1. Let a ∈ Fq be an element of order at least t. Then the least
degree t-sparse multiple of fa,t is xoa − 1 where oa is the order of a.

The proof uses the null vector formulation of (2.2) in Section 2 to reason
that low-degree t-sparse multiples correspond to weight t null vectors of a certain
matrix. It is similar to the construction of BCH codes of specified design distance.
Of cryptographic interest is that fact that these order-finding polynomials are
frequent enough in Fq[x] so that the reduction also holds in the average case.

Next we give a probabilistic algorithm for finding the least degree binomial
multiple for polynomials f ∈ Fq. This algorithm makes repeated calls to an
OrderFqe

(a, n) (defined in the previous section) subroutine. Combined with the
hardness result of the previous section (with t=2), this precisely characterizes the
complexity of finding least-degree binomial multiples in terms of the complexity
of OrderFqe

(a, n).



Algorithm 5.1: Least degree binomial multiple of f over Fq
Input: f ∈ Fq[x]
Output: The least degree binomial multiple h of f

1 Factor f = xbfe1
1 · f

e2
2 · f

e`
` for irreducible f1, . . . , f` ∈ Fq[x], and set di ← deg fi

2 for i = 1, 2, . . . , ` do
3 ai ← x ∈ Fq[x]/(fi), a root of fi in the extension Fqdi

4 Calculate oi, the order of ai in Fq[x]/(fi).

5 n1 ← lcm({oi/ gcd(oi, q − 1)}) for all i such that di > 1
6 n2 ← lcm({order(ai/aj)}) over all 1 ≤ i, j ≤ u
7 n← lcm(n1, n2)

8 h̃← (xn − an1 )
9 e← dlogp max eie, the smallest e such that pe ≥ ei for all i

10 return h = xb(xn − an1 )p
e

Algorithm 5.1 solves the binomial multiple problem in Fq by making calls to
an OrderFqe

(a, n) procedure that computes the order of elements in extension

fields of Fq. Thus SpMul
(2)
Fq

(f) reduces to OrderFqe
(a, n) in probabilistic poly-

nomial time. Construction of an irreducible polynomial (required for finite field
arithmetic) as well as the factoring step in the algorithm make it probabilistic.

Theorem 5.2. Given f ∈ Fq[x] of degree d, Algorithm 5.1 correctly computes a
binomial multiple h of f with least degree. It uses at most d2 calls to a routine
for order finding in Fqe , for various e ≤ d, and dO(1) other operations in Fq. It
is probabilistic of the Las Vegas type.

The proof of correctness (omitted here) works in three steps. The algorithm
is first shown to work correctly for irreducible polynomials, then for squarefree
polynomials and finally for all polynomials.

6 Conclusions and Open Questions

We have presented an efficient algorithm to compute the least-degree binomial
multiple of any rational polynomial. We can also compute t-sparse multiples of
rational polynomials that do not have repeated cyclotomic factors, for any fixed
t, and given a bound on the height of the multiple.

We have also shown that, even for fixed t, finding a t-sparse multiple of
a degree-d polynomial over Fq[x] is at least as hard as finding the orders of
elements in Fqd . In the t = 2 case, there is also a probabilistic reduction in the
other direction, so that computing binomial multiples of degree-d polynomials
over Fq[x] probabilisticly reduces to order finding in Fqd .

Several important questions remain unanswered. Although we have an un-
conditional algorithm to compute binomial multiples of rational polynomials,
computing t-sparse multiples for fixed t ≥ 3 requires an a priori height bound
on the output as well as the requirement that the input contains no repeated
cyclotomic factors. Removing these restrictions would be desirable (if possible).

Regarding lower bounds, we know that computing t-sparse multiples over
finite fields is at least as hard as order finding, a result which is tight (up to



randomization) for t = 2, but for larger t we believe the problem is even harder.
Specifically, we suspect that computing t-sparse multiples is NP-complete over
both Q and Fq, when t is a parameter in the input.
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