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Problem Statement

Sparsest Multiple Computation

Input Univariate polynomial f in Q[x] or Fq[x]

Output A sparsest multiple of f of least degree.
(That is, a multiple of f with fewest nonzero terms)

Example (in Q[x])

Input: f = x4 − 3x3 + x2 + 6x + 4

Sparsest multiple: h = x12 + 259x6 + 64

Not computed: h/f = x8 + 3x7 + 8x6 + 15x5 + 15x4 + · · · ∈ Q[x]



Motivations: Cryptography

LFSR-based stream ciphers

• Sparse multiples of feedback polynomial lead to fast attacks.

TCHo

• Crytosystem proposed by (Aumasson et al, 2007)

• Computing sparse multiples in F2[x] is their hard problem

• They explicitly assume average-case exponential lower bound



Motivations: Efficient Arithmetic

First noticed by Brent & Zimmerman (2003)

• Arithmetic in prime power fields Fpk is usually done in Fp/〈Γ〉

for irreducible Γ ∈ Fp[x].
• Some field sizes admit no very-sparse irreducibles

• Idea: Work modulo a sparse multiple with low degree.

• Lots of searching has been done over F2[x]



Motivations: Computer Aided Geometric Design

source: CAEbridge, LLC



Motivations: Computer Aided Geometric Design

• Geometric surfaces are represented either
• Parametrically: vector of parametric rational functions, or
• Implicitly: solution set of multivariate polynomial

• Coverting from parametric to implicit is called implicitization.

• Can be thought of as finding a polynomial with given roots.

• Sparse implicitizatons make certain computations easier.



Motivations: Coding Theory

The problem can be formulated in linear algebra terms:
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• Finding sparse vectors in a lattice is NP-hard.

• Similar to maximum likelihood decoding of cyclic codes.
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Summary of Results

Over Fq[x] Over Q[x]

Binomial multiples
Equivalent to
order finding

In P

t-sparse multiples,
t constant

Harder than
order finding

(mostly) in P

t-sparse multiples,
t variable

??? ???



Order Finding

Definition (Order)

Given α ∈ Fq[x], the multiplicative order of α is the least integer k
such that αk = 1.

Connection to binomial multiples

If f (α) = 0, and f | (xn − 1), then αn = 1.

• To show hardness, given α ∈ Fqe , we take
f = (x − 1) ·minpoly(α) in Fq[x]
and find a binomial multiple of f .

• To show easiness, given f ∈ Fq[x] with deg f = d,
we find orders of all distinct roots α ∈ Fqd of f



Complexity of Order Finding



t-sparse Multiples Harder than Order Finding

Consider α ∈ Fqe .
We use an oracle for t-sparse multiples to find the order of α.

• Find gi = minpoly(αi) ∈ Fq[x] for i = 0, 1, . . . , t − 1
• Let f ∈ Fq[x] be product of distinct gi’s.

• Theorem: f has a t-sparse multiple with degree ≤ n
iff order(α) ≤ n.

(In fact, the t-sparse multiple will be a binomial multiple.)



Sparse multiples in Q[x] connect to factorization

Related Problems
sparse multiple of a
low-degree polynomial

⇔
low-degree factor of a

sparse polynomial

• The latter problem has received much attention,
both from mathematicians and computer scientists.

• It is convenient to associate with a squarefree input f ∈ Q[x]
the roots θ1, θ2, . . . ∈ Q̄ of its irreducible factors.
Then f divides some h ∈ Q[x] iff h(θi) = 0 for each i.



Binomial multiples in Q[x]

Theorem (Risman (1976))

An irreducible f ∈ Q[x] with any binomial multiple
has some binomial multiple of degree n,
where n = s · t for some s| deg f and φ(t)| deg f .

• Leads to a polynomial upper bound on degree of
least-degree binomial multiple

• Can then find binomial multiples of irreducibles by search

• For reducible f , correlating the binomial multiples of each
factor just involves lcms and some more checks.

• We can generate examples of least-degree sparsest multiples
with exponential degree and log height.



t-sparse Multiples in Q[x]

Key Tool: Lenstra (1999)

If h ∈ Q[x] written h1 + xkh2 has a big gap: k � h2,
then any low-degree non-cyclotomic factor of h
is a factor of both h1 and h2

For instance, consider the polynomial h given by:

2x105 + 3x104 − 2x103 − x102 + x101 − 3x100︸                                                  ︷︷                                                  ︸
h2

︸             ︷︷             ︸
(the gap)

−2x4 + x3 + 4x2 − 3x︸                     ︷︷                     ︸
h1

f = 2x2 + x − 3 divides h, so f |h1 and f |h2.

• Lenstra used this for lacunary factorization



Gap theorem for sparsest multiples

Turning the gap theorem around, we get:

Theorem

The least-degree t-sparse multiple with height at most c
of a non-cyclotomic polynomial f ∈ Q[x] has degree bounded by

(t + log c + deg f )O(1)

With such a degree bound, the problem reduces to finding the
least-height t-sparse rational vector in a lattice.

This is polynomial-time when t is constant
using (Ajtai, Kumar, and Sivakumar 2001).



Handling cyclotomics: Example

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x + 4

Step 1: Extract cyclotomic factors

f = (x2 − x + 1)︸        ︷︷        ︸
Φ6

· (x4 − x3 + x2 − x + 1)︸                     ︷︷                     ︸
Φ10

· (x4 − 3x3 + x2 + 6x + 4)︸                         ︷︷                         ︸
fD

(cyclotomic-free)



Handling cyclotomics: Example

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x + 4

Step 2: Calculate degree bound

Target sparsity: ≤ 10, target height: ≤ 1000

Actual degree bound: deg h ≤ 11 195 728
(asymptotically polynomial, practically quite large!)

For this example, we’ll cheat and say deg h ≤ 20



Handling cyclotomics: Example

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x + 4

Step 3: Find low-degree sparsest multiples

Sparsest multiple of f with degree ≤ 20:

hA = x11 − 3x10 + 12x8 − 9x7 + 10x6 − 4x5 + 9x4 + 3x3 + 8

Sparsest multiple of fD (cyclotomic-free part):

hB = x12 + 259x6 + 64



Handling cyclotomics: Example

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x + 4

Step 4: Sparsest multiple of cyclotomic part

Recall f = Φ6 · Φ10 · fD.
Cyclotomic part is fC = Φ6 · Φ10

Sparsest multiple of fC:

hC =
(
xlcm(6,10) − 1

)
=

(
x30 − 1

)



Handling cyclotomics: Example

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x + 4

Step 5: Compare candidates

Two candidates for sparsest multiple of f :

• hA = x11 − 3x10 + 12x8 − 9x7 + 10x6 − 4x5 + 9x4 + 3x3 + 8
• hB · hC = x42 + 259x36 + 64x30 − x12 − 259x6 − 64

Conclusion: A sparsest multiple of f is

h = x42 + 259x36 + 64x30 − x12 − 259x6 − 64



Open Problems

• Proving NP-hardness for the general case (t variable)
over rationals or finite fields

• Improving the t-sparse algorithm over Q[x]:
• More practical degree bounds
• Eliminate need for a priori height bound
• De-randomize
• Handle missing case:

non-cyclotomic and repeated cyclotomic factors

• Extending to multivariate polynomials


