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Problem Statement

Sparsest Multiple Computation

Input Univariate polynomial f in Q[x] or F,[x]

Output A sparsest multiple of f of least degree.
(That is, a multiple of f with fewest nonzero terms)

Example (in Q[x])
Input: f = x* = 3x3 + x> + 6x + 4
Sparsest multiple: 7 = x'> + 259x° + 64

Not computed: A/f = x8 + 3x7 + 8x + 15x° + 15x* + -+ € Q[«]



Motivations: Cryptography

LFSR-based stream ciphers
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e Sparse multiples of feedback polynomial lead to fast attacks.

TCHo

o Crytosystem proposed by (Aumasson et al, 2007)

e Computing sparse multiples in F;[x] is their hard problem

* They explicitly assume average-case exponential lower bound



Motivations: Efficient Arithmetic

First noticed by Brent & Zimmerman (2003)

e Arithmetic in prime power fields F is usually done in F, /(')
for irreducible I' € F, [x].

o Some field sizes admit no very-sparse irreducibles
e ldea: Work modulo a sparse multiple with low degree.
o Lots of searching has been done over F;[x]



Motivations: Computer Aided Geometric Design

source: CAEbridge, LLC



Motivations: Computer Aided Geometric Design

Geometric surfaces are represented either

o Parametrically: vector of parametric rational functions, or
o Implicitly: solution set of multivariate polynomial

Coverting from parametric to implicit is called implicitization.

Can be thought of as finding a polynomial with given roots.

Sparse implicitizatons make certain computations easier.



Motivations: Coding Theory

The problem can be formulated in linear algebra terms:
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Motivations: Coding Theory
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e Finding sparse vectors in a lattice is NP-hard.
e Similar to maximum likelihood decoding of cyclic codes.
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Order Finding

Definition (Order)

Given a € F,[x], the multiplicative order of a is the least integer k
such that o = 1.

Connection to binomial multiples
If f(@) =0, and f | (" — 1), then & = 1.

e To show hardness, given a € F,, we take
f = (x—1)-minpoly(@) in Fy[x]
and find a binomial multiple of f.

e To show easiness, given f € F,[x] with degf = d,
we find orders of all distinct roots a € F . of f
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t-sparse Multiples Harder than Order Finding

Consider a € F.
We use an oracle for ¢-sparse multiples to find the order of .

o Find g; = minpoly(a’) € F [x] fori=0,1,...,1— 1
o Letf € F,[x] be product of distinct g;’s.

e Theorem: f has a t-sparse multiple with degree < n
iff order(a) < n.

(In fact, the -sparse multiple will be a binomial multiple.)



Sparse multiples in Q[x] connect to factorization

Related Problems

sparse multiple of a low-degree factor of a
low-degree polynomial sparse polynomial

e The latter problem has received much attention,
both from mathematicians and computer scientists.

e |t is convenient to associate with a squarefree input f € Q[x]
the roots 61, 65, ... € Q of its irreducible factors.
Then f divides some h € Q[x] iff h(6;) = O for each i.



Binomial multiples in Q[x]

Theorem (Risman (1976))

An irreducible f € Q[x] with any binomial multiple
has some binomial multiple of degree n,
where n = s - t for some s|degf and ¢(t)| deg f.

e Leads to a polynomial upper bound on degree of
least-degree binomial multiple

e Can then find binomial multiples of irreducibles by search
e For reducible f, correlating the binomial multiples of each
factor just involves lems and some more checks.

e We can generate examples of least-degree sparsest multiples
with exponential degree and log height.



t-sparse Multiples in Q[x]

Key Tool: Lenstra (1999)

If » € Q[x] written h; + x*h; has a big gap: k > h;y,
then any low-degree non-cyclotomic factor of &
is a factor of both /; and &,

For instance, consider the polynomial & given by:

2x105 4 3104 9y 103 _ (1024 (101 _ 3,100 —2x* + %+ 4x® - 3x

hy (the gap) hy

f =2x? + x - 3 divides h, so flh; and flh,.

e Lenstra used this for lacunary factorization



Gap theorem for sparsest multiples

Turning the gap theorem around, we get:

Theorem
The least-degree t-sparse multiple with height at most ¢
of a non-cyclotomic polynomial f € Q[x] has degree bounded by

(t + log ¢ + degf)°V

With such a degree bound, the problem reduces to finding the
least-height r-sparse rational vector in a lattice.

This is polynomial-time when ¢ is constant
using (Ajtai, Kumar, and Sivakumar 2001).



Handling cyclotomics: Example

f=x10—5x9+10x8—8x7+7x6—4x5+4x4+x3+x2—2x+4

Step 1: Extract cyclotomic factors

f=(x2—x+1)-(x4—x3+x2—x+1)-(x4—3x3+x2+6x+4)

D D19 fo
(cyclotomic-free)




Handling cyclotomics: Example

f=x10—5x9+10x8—8x7+7x6—4x5+4x4+x3+x2—2x+4

Step 2: Calculate degree bound
Target sparsity: < 10, target height: < 1000

Actual degree bound: degh < 11195728
(asymptotically polynomial, practically quite large!)

For this example, we’'ll cheat and say degh < 20



Handling cyclotomics: Example

f=x10—5x9 +108 -8 + 70 4 + At + P+ P - 20+ 4
Step 3: Find low-degree sparsest multiples
Sparsest multiple of f with degree < 20:
By = x" = 3x1% 4+ 12x% — 07 + 10x® — 4w +9x* + 343 + 8
Sparsest multiple of fp (cyclotomic-free part):

hg = x'2 +259x° + 64



Handling cyclotomics: Example

f=x10—5x9+10x8—8x7+7x6—4x5+4x4+x3+x2—2x+4

Step 4: Sparsest multiple of cyclotomic part

Recallf = Qg - Dy 'fD-
Cyclotomic part is fc = @g - @19

Sparsest multiple of f¢:

he = (xlcm(6,10) _ 1) _ (x30 B 1)



Handling cyclotomics: Example

f=x10—5x9+10x8—8x7+7x6—4x5+4x4+x3+x2—2x+4

Step 5: Compare candidates

Two candidates for sparsest multiple of f:
o gy =xM —3x10 4 1268 —9x7 + 1040 — 40 + 9x* + 347 + 8
o hg-he =x% +259x% + 64x°° — x12 — 2506 — 64

Conclusion: A sparsest multiple of f is

h=x* + 25930 + 64x0 — x12 — 259x° — 64



Open Problems

e Proving NP-hardness for the general case (¢ variable)
over rationals or finite fields

e Improving the t-sparse algorithm over Q[x]:
¢ More practical degree bounds
o Eliminate need for a priori height bound
e De-randomize
¢ Handle missing case:
non-cyclotomic and repeated cyclotomic factors

o Extending to multivariate polynomials



