Computing sparse multiples of polynomials

Mark Giesbrecht Daniel S. Roche Hrushikesh Tilak

Symbolic Computation Group School of Computer Science

WATERLOO

ISAAC 2010 Jeju, Republic of Korea 15 December 2010

Problem Statement

Sparsest Multiple Computation

Input Univariate polynomial f in $\mathbb{Q}[x]$ or $\mathbb{F}_q[x]$ Output A sparsest multiple of f of least degree. (That is, a multiple of f with fewest nonzero terms)

Example (in $\mathbb{Q}[x]$)

Input: $f = x^4 - 3x^3 + x^2 + 6x + 4$

Sparsest multiple: $h = x^{12} + 259x^6 + 64$

Not computed: $h/f = x^8 + 3x^7 + 8x^6 + 15x^5 + 15x^4 + \dots \in \mathbb{Q}[x]$

Motivations: Cryptography

Sparse multiples of feedback polynomial lead to fast attacks.

TCHo

- Crytosystem proposed by (Aumasson et al, 2007)
- Computing sparse multiples in $\mathbb{F}_2[x]$ is their hard problem
- They explicitly assume average-case exponential lower bound

Motivations: Efficient Arithmetic

First noticed by Brent & Zimmerman (2003)

- Arithmetic in prime power fields \mathbb{F}_{p^k} is usually done in $\mathbb{F}_p/\langle\Gamma\rangle$ for irreducible $\Gamma \in \mathbb{F}_p[x]$.
- Some field sizes admit no very-sparse irreducibles
- Idea: Work modulo a sparse multiple with low degree.
- Lots of searching has been done over F₂[x]

Motivations: Computer Aided Geometric Design

source: CAEbridge, LLC

Motivations: Computer Aided Geometric Design

- · Geometric surfaces are represented either
 - Parametrically: vector of parametric rational functions, or
 - Implicitly: solution set of multivariate polynomial
- Coverting from parametric to implicit is called implicitization.
- Can be thought of as finding a polynomial with given roots.
- Sparse implicitizatons make certain computations easier.

Motivations: Coding Theory

The problem can be formulated in linear algebra terms:

$$\begin{array}{cccc} M_f & \times & v_g & = & v_h \\ f_0 & & & \\ f_1 & f_0 & & \\ \vdots & f_1 & \ddots & \\ f_d & \vdots & \ddots & f_0 \\ & f_d & \ddots & f_1 \\ & & & \vdots \\ & & & & f_d \end{array} \right| \begin{pmatrix} g_0 \\ g_1 \\ \\ \vdots \\ g_{n-d} \end{array} \right| = \left[\begin{array}{c} h_0 \\ h_1 \\ \\ \vdots \\ \\ h_n \end{array} \right]$$

Motivations: Coding Theory

The problem can be formulated in linear algebra terms:

- Finding sparse vectors in a lattice is **NP**-hard.
- Similar to maximum likelihood decoding of cyclic codes.

Summary of Results

	Over $\mathbb{F}_q[x]$	Over $\mathbb{Q}[x]$
Binomial multiples	Equivalent to order finding	In P
<i>t</i> -sparse multiples, <i>t</i> constant	Harder than order finding	(mostly) in P
<i>t</i> -sparse multiples, <i>t</i> variable	???	???

Order Finding

Definition (Order)

Given $\alpha \in \mathbb{F}_q[x]$, the multiplicative order of α is the least integer k such that $\alpha^k = 1$.

Connection to binomial multiples

If $f(\alpha) = 0$, and $f \mid (x^n - 1)$, then $\alpha^n = 1$.

- To show hardness, given α ∈ F_{q^e}, we take f = (x − 1) · minpoly(α) in F_q[x] and find a binomial multiple of f.
- To show easiness, given f ∈ F_q[x] with degf = d, we find orders of all distinct roots α ∈ F_{qd} of f

Complexity of Order Finding

t-sparse Multiples Harder than Order Finding

Consider $\alpha \in \mathbb{F}_{q^e}$.

We use an oracle for *t*-sparse multiples to find the order of α .

- Find $g_i = \text{minpoly}(\alpha^i) \in \mathbb{F}_q[x]$ for $i = 0, 1, \dots, t-1$
- Let $f \in \mathbb{F}_q[x]$ be product of distinct g_i 's.
- **Theorem**: f has a *t*-sparse multiple with degree $\leq n$ iff order(α) $\leq n$.

(In fact, the *t*-sparse multiple will be a binomial multiple.)

Sparse multiples in $\mathbb{Q}[x]$ connect to factorization

- The latter problem has received much attention, both from mathematicians and computer scientists.

Binomial multiples in $\mathbb{Q}[x]$

Theorem (Risman (1976))

An irreducible $f \in \mathbb{Q}[x]$ with any binomial multiple has some binomial multiple of degree n, where $n = s \cdot t$ for some $s | \deg f$ and $\phi(t) | \deg f$.

- Leads to a polynomial *upper bound* on degree of least-degree binomial multiple
- Can then find binomial multiples of irreducibles by search
- For reducible *f*, correlating the binomial multiples of each factor just involves lcms and some more checks.
- We can generate examples of least-degree sparsest multiples with exponential degree and log height.

t-sparse Multiples in $\mathbb{Q}[x]$

Key Tool: Lenstra (1999)

If $h \in \mathbb{Q}[x]$ written $h_1 + x^k h_2$ has a big gap: $k \gg h_2$, then any low-degree non-cyclotomic factor of his a factor of both h_1 and h_2

For instance, consider the polynomial *h* given by:

$$\underbrace{\frac{2x^{105} + 3x^{104} - 2x^{103} - x^{102} + x^{101} - 3x^{100}}{h_2}}_{h_2} \underbrace{-2x^4 + x^3 + 4x^2 - 3x}_{h_1}$$

 $f = 2x^2 + x - 3$ divides h, so $f|h_1$ and $f|h_2$.

Lenstra used this for lacunary factorization

Gap theorem for sparsest multiples

Turning the gap theorem around, we get:

Theorem

The least-degree *t*-sparse multiple with height at most *c* of a non-cyclotomic polynomial $f \in \mathbb{Q}[x]$ has degree bounded by

 $(t + \log c + \deg f)^{O(1)}$

With such a degree bound, the problem reduces to finding the least-height *t*-sparse rational vector in a lattice.

This is polynomial-time when *t* is constant using (Ajtai, Kumar, and Sivakumar 2001).

$$f = x^{10} - 5x^9 + 10x^8 - 8x^7 + 7x^6 - 4x^5 + 4x^4 + x^3 + x^2 - 2x + 4$$

Step 1: Extract cyclotomic factors

$$f = \underbrace{(x^2 - x + 1)}_{\Phi_6} \cdot \underbrace{(x^4 - x^3 + x^2 - x + 1)}_{\Phi_{10}} \cdot \underbrace{(x^4 - 3x^3 + x^2 + 6x + 4)}_{f_D}$$
(cyclotomic-free)

$$f = x^{10} - 5x^9 + 10x^8 - 8x^7 + 7x^6 - 4x^5 + 4x^4 + x^3 + x^2 - 2x + 4$$

Step 2: Calculate degree bound

Target sparsity: ≤ 10 , target height: ≤ 1000

Actual degree bound: $\deg h \le 11\,195\,728$ (asymptotically polynomial, practically quite large!)

For this example, we'll cheat and say $\deg h \le 20$

$$f = x^{10} - 5x^9 + 10x^8 - 8x^7 + 7x^6 - 4x^5 + 4x^4 + x^3 + x^2 - 2x + 4$$

Step 3: Find low-degree sparsest multiples

Sparsest multiple of *f* with degree ≤ 20 :

$$h_A = x^{11} - 3x^{10} + 12x^8 - 9x^7 + 10x^6 - 4x^5 + 9x^4 + 3x^3 + 8x^6 + 9x^6 + 9$$

Sparsest multiple of f_D (cyclotomic-free part):

$$h_B = x^{12} + 259x^6 + 64$$

$$f = x^{10} - 5x^9 + 10x^8 - 8x^7 + 7x^6 - 4x^5 + 4x^4 + x^3 + x^2 - 2x + 4$$

Step 4: Sparsest multiple of cyclotomic part

Recall $f = \Phi_6 \cdot \Phi_{10} \cdot f_D$. Cyclotomic part is $f_C = \Phi_6 \cdot \Phi_{10}$

Sparsest multiple of f_C :

$$h_C = (x^{\text{lcm}(6,10)} - 1) = (x^{30} - 1)$$

$$f = x^{10} - 5x^9 + 10x^8 - 8x^7 + 7x^6 - 4x^5 + 4x^4 + x^3 + x^2 - 2x + 4$$

Step 5: Compare candidates

Two candidates for sparsest multiple of f:

•
$$h_A = x^{11} - 3x^{10} + 12x^8 - 9x^7 + 10x^6 - 4x^5 + 9x^4 + 3x^3 + 8$$

•
$$h_B \cdot h_C = x^{42} + 259x^{36} + 64x^{30} - x^{12} - 259x^6 - 64$$

Conclusion: A sparsest multiple of f is

$$h = x^{42} + 259x^{36} + 64x^{30} - x^{12} - 259x^6 - 64$$

Open Problems

- Proving NP-hardness for the general case (*t* variable) over rationals or finite fields
- Improving the *t*-sparse algorithm over Q[x]:
 - More practical degree bounds
 - Eliminate need for a priori height bound
 - De-randomize
 - Handle missing case:

non-cyclotomic and repeated cyclotomic factors

• Extending to multivariate polynomials