COMPUTER SCIENCE
AND INFORMATION

Arithmetic for Sparse Integers and Floats

Midshipman 1/C Mark Atkins, James Browning IlI, and Norman Overfield
Assistant Professor Daniel S. Roche, Computer Science

Why compute with
REALLY big numbers?

Needed for cryptography and numerical
computing. Such applications require
numbers containing thousands or even
millions of bits, traditional
representation is both slow and
inefficient for storage.

Current software exists only
for DENSE integers

Every bit must be stored in a traditional
representation. Libraries such as GMP
and Givaro are used for computing.

Can we do better when
integers are SPARSE?

We do not have to store runs of 1’s or 0’
s in sparse representation. Only
separate strings of 1’s and the 0’s
between each set need to be stored.
This requires less space to store our
numbers.

What are “Sparse” Integers?

Fixed Precision Floating Point Arithmetic
The Idea: The MPFR library implements floating point

+ Base 10 integer: 1112455258097 calculations using GMP; we achieved this functionality using
* Base 2 dense representation (41 bits): sparse integers.

10000001100000011100000000001111111110001
I - | } {

\ Composition: We use a splint type to store our mantissa, with

« Sparse representation
8 bit window size,
5 nodes.

a long integer holding our exponent.

Capability: We are able to extend our splint functionality to
make floating point calculations.

Window Size: The maximum number of bits in each coefficient

Timing comparison for GMP vs. our library

(-15, 1, 7, 3, and 1 in this example). With window size we can store
values between -128 and 127. If there is overflow, a new node will
be created.

1,000,000

100,000

Nodes: Nodes default to store coefficients up to 32 bits, and
differences up to 16 bits. Customizable through templates.

10,000

1,000

Storage: Nodes are stored in vectors, with each node containing a
coefficient value, and the difference. Which is the length to the
start of the next node.

100

10

B GNU Multiple
Precisi

100,000 1,000,000 10,000,000
Size of Number in Bits

Our Code Contributions

e Lint - C++ large integer class.
Simple implementation of a
dense large integer library.

e Splint - C++ sparse integer class.

e fpSplint - C++ fixed precision
floating point arithmetic library
implemented using sparse
Integers.

What can we do with them?

Conversion of “dense’” integer: We take a dense number, and through a process
involving modulo, subtraction, and right shifting, produce the optimal sparse
representation.

Addition/Subtraction: Addition is similar to merging. We do this by adding up the
nodes of two sparse integers one at a time until the sum is calculated. The two least
significant nodes are compared, and whichever has the smallest difference value is
added to the sum.

Multiplication: Calculated by multiplying one node of one sparse integer by every
node in the other sparse integer. This is done for all nodes, and all of these are

summed.

Conclusion

e \We created three implementations for
dense, sparse and floating point numbers.

e Our splint class was extensively tested
against the state-of-the-art GMP library.

e The current crossover point where sparsity
‘wins” Is around 1 million bits and 100
sparse nodes.

e Sparse integers and floating point numbers
may have applications in improving
cryptography and numerical computation.

e More work is needed to determine the
feasibility of these applications.

This material is based upon work supported by the National Science Foundation under Grant No. 1319994, "AF: Small: RUI: Faster Arithmetic for Sparse Polynomials and Integers".



