Introduction

Space-Efficient Karatsuba Space-Efficient FFT-Based

Fast and Small:
Multiplying Polynomials without Extra Space

Daniel S. Roche

University of
Symbolic Computation Group Waterloo
0 R c School of Computer Science W
Ontario Research Centre for Computer Algebra UmverSIty of Waterloo NN

&

CECM Day
SFU, Vancouver, 24 July 2009

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Preliminaries

We study algorithms for univariate polynomial multiplication:

The Problem

Given: Aring R, an integer n,
and f, g € R[x] with degrees less than n

Compute: Their product f - g € R[x]

The Model

¢ Ring operations have unit cost
e Random reads from input, random reads/writes to output
e Space complexity determined by size of auxiliary storage

Introduction Space-Efficient Karatsuba

Space-Efficient FFT-Based

Univariate Multiplication Algorithms

Time Complexity | Space Complexity
Classical Method o(n?) o(l)
Divide-and-Conquer log, 3 1.59
Karatsuba/Ofman '63 O@™=7) or O(n) ow)
FFT-based
Schoénhage/Strassen '71 | O(nlognloglogn) O(n)

Cantor/Kaltofen 91

Introduction Space-Efficient Karatsuba

Space-Efficient FFT-Based Conclusions

Univariate Multiplication Algorithms

Time Complexity

Space Complexity

Classical Method

o(n?)

o)

Divide-and-Conquer
Karatsuba/Ofman '63

0(n10g2 3) or 0(n1.59)

FFT-based
Schdnhage/Strassen ’71
Cantor/Kaltofen '91

O(nlognloglogn)

Goal: Keep time complexity the same, reduce space

Introduction Space-Efficient Ke

The Evolution of Multiplication

Small and slow

The Evolution of Multiplication
Big and fast

The Evolution of Multiplication

Small and fast

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Previous Work

« Savage & Swamy 1979 O(n?) time-space lower bound for
straight line programs

« Abrahamson 1985: O(n?) time-space lower bound for
branching programs

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Previous Work

« Savage & Swamy 1979 O(n?) time-space lower bound for
straight line programs

« Abrahamson 1985: O(n?) time-space lower bound for
branching programs

e Monagan 1993: Importance of space efficiency for
multiplication over Z,[x]

e Maeder 1993: Bounds extra space for Karatsuba

multiplication so that storage can be preallocated
— about 2n extra memory cells required.

e Thomé 2002: Karatsuba multiplication for polynomials
using n extra memory cells.

Introduction Space-Efficient suba Space-Efficient FFT-Basec

Present Contributions

¢ New Karatsuba-like algorithm with O(log n) space

e New FFT-based algorithm with O(1) space
under certain conditions

e Implementations in C over Z/pZ

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Standard Karatsuba Algorithm

Idea: Reduce one degree-2k multiplication to three of degree k.

e Originally noticed by Gauss (multiplying complex numbers),
rediscovered and formalized by Karatsuba & Ofman

Input: f, g € R[x] each with degree less than 2k.
Write f = fo + fix* and g = go + g1 x*.

£0 f1 g0 gl

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms

Version “0”

Read-Only Input Space:
f01 f11 g0 gl

Read/Write Output Space:

| Cempty) | (empty) | C(empty) | (empty) |

To Compute: f - g

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms

Version “1”

© The low-order coefficients of the output are initialized as 4,
and the product f - g is added to this.

Read-Only Input Space:
f01 f11 g0 gl

Read/Write Output Space:

| ho | hl | Cempty) | (empty) |

To Compute: f-g+h

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms

Version “2”

© The low-order coefficients of the output are initialized as 4,
and the product f - g is added to this.

©® The first polynomial f is given as a sum f© + f(,

Read-Only Input Space:
f01 f11 g0 gl

£00 £10

Read/Write Output Space:

| ho | hl | Cempty) | (empty) |

To Compute: (FO +). g+h

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Dirty Details

Restrict modulus to 29 bits to allow for delayed reductions

In the Karatsuba step
e Only 4 values are added/subtracted in one position
e Delay reductions, perform two “corrections”
Classical algorithm

e Switch over at n < 32 (determined experimentally)

o Perform arithmetic in double-precision long longs;
delay reductions (a la Monagan)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Problem: code explosion

3 “versions” of algorithms (based on extra constraints)
X
Karatsuba or classical
X
odd-sized or even-sized operands
X
equal-sized operands or “one different”

Solution: Use “supermacros” in C:
Same file is included multiple times with some parameter values
changed (crude form of code generation).

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

DFT-Based Multiplication

Input

Evaluation (DFT)

Pointwise multiplication *

| DFT (£-9)

Interpolation (inverse DFT)

I fg

Space-Efficient FFT-Based

Simplifying Assumptions

From now on:

o degf +degg < n =2k forsome k e N
 The base ring R contains a 2*-PRU w

That is, assume “virtual roots of unity” have already been found,
and optimize from there.

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Usual Formulation of the FFT

Perform two 5-DFTs followed by 5 2-DFTs:

® Writef(x) :ﬁaven(xz) +Xx 'fodd(xz)
(i.e. degfeven, degfoaa < n/2)
e Compute DFT 2 (feven) @nd DFT 2 (foda)

o Compute each f(w') = fuven(W¥) + w - foaa(w?)

Make use of “butterfly circuit” for each size-2 DFT:

a a+w-b

bXa—wi~b

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example 8-Way FFT
[
f@?)

fwh
- Xﬂw
*--- f@)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Reverted Binary Ordering

In-Place FFT permutes the ordering into reverted binary:

0=000, 1=001, 2=010, 3=011, 4=100, 5=101, 6=110, 7=111,

I T TR AR A A

0=000, 4=100, 2=010, 6=110, 1=001, 5=101, 3=011, 7=111,

Problem: Powers of w are not accessed in order
Possible solutions:

e Precompute all powers of w — too much space
o Perform steps out of order — terrible for cache
o Permute input before computing — costly

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Alternate Formulation of FFT

Perform 3 2-DFTs followed by two 5-DFTs
o Write f = fiow + X% - fuigh
e Compute fy = fiow + fhigh @nd fi = fiow(wxX) = fhigh(wx)
« Compute each f(w*) = fo(w*) and f(w**!) = fi(w*)

Modified “butterfly circuit”:

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example: 8-Way In- Place FFT (Alternate Formula’uc%n)
.- Xf(w“)
f@®)

f@h
f@)
---Xﬂaﬂ)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Folded Polynomials

Recall the basis for the “alternate” FFT formulation:

Jo = fiow + /high
h Siow(wx) _fhigh(wx)

A generalization (recalling that n = 2%):
Definition (Folded Polynomials)

fi= f(wziflx) remx? — 1

Theorem
f (wzi(2j+1)) = firl (wz”lj)

So by computing each f; at all powers of «',
we get the values of f at all powers of w.

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Reverted Binary Ordering of 0,1, ..., 15)

0,8,4,12,2,10,6,14,1,9,5,13,3, 11,7, 15

DFT,(f) in binary reversed order
can be computed by DFTs of f;s:

o) DFT,(f1)

Space-Efficient FFT-Based

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

Input

I (empty)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

Folding

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

In-Place FFTs (alternate formulation)

DFT(£1) DFT(gl)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

Pointwise Multiplication

o e
% J]

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

Folding

DFT(£f1-g1)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

In-Place FFTs (alternate formulation)

DFT(£2) DFT(g2)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

Pointwise Multiplication

E>I<5

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

(k iterations)

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

T —

In-Place Reverse FFT (usual formulation)

I f-g

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based

Conclusions

Analysis

Time cost of the various stages:
e Folding: O(n) cost times log n folds = O(n log n)
e FFTs: O(mlogm) form =n,n/2,n/4,...,1 = O(nlogn)
e Multiplications: n/2 + n/4+---+ 1= 0(n)

Total cost: O(nlogn) time and O(1) extra space
when the following conditions hold:

e n=degf +degg+ 1isapowerof 2
¢ R contains an n-PRU w

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Modular Arithmetic

Use floating-point Barrett reduction (from NTL):
e Pre-compute an approximation of 1/p
e Givena,b € Z,, compute an approximation of g = la-b - (1/p)]
e Then ab — gp equals ab rem p plus or minus p.

The cost of this method:

2 double multiplications

2 int multiplications
1 int subtraction

3 conversions between int and double

2 “correction” steps to get exact result
< not necessary until the very end!

Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Implementation Benchmarking

Details of tests:
e 2.5 GHz 64-bit Athalon, 256KB L1, 1MB L2, 2GB RAM
e p=167772161 (28 bits)
e Comparing CPU time (in seconds) for the computation

Disclaimer
We are comparing apples to oranges.

Introduction

Space-Efficient Karatsuba

Space-Efficient FFT-Basec

Conclusions

Timing Benchmarks

Time
over
NTL

3

2.5

1.5

Klaratsubla-like '—e—

FFT-based - - + -
o
+ + o+ o+ T
| | | | | |
8 10 12 14 16 18

20

Introduction Space- suba Space-Efficient FFT-Base Conclusions

Future Directions

Efficient implementation over Z (GMP)

Similar results for
Toom-Cook 3-way or k-way

What modulus bit restriction is “best”?

Is completely in-place (overwriting input) possible?

	Introduction
	Space-Efficient Karatsuba
	Space-Efficient FFT-Based
	Conclusions

