
We seek algorithms that are fast when the input is given in the
lacunary representation:

For f ∈ R[x1, . . . , xℓ] with total degree n given by

f (x) = c1x
e1 + c2x

e2 + · · · + ctx
et,

where each ci ∈ R \ {0} and xei = x
(ei)1

1 x
(ei)2

2 · · ·x(ei)ℓ

ℓ , we store only
a linked list of tuples (ci, ei), for a total size of O(tℓ log n).

So by “fast”, we mean complexity polynomial in tℓ log n, and in the
case that R = Q, polynomial in the height of f as well.

Why worry about this representation?

• Corresponds to intuition and how humans express polynomials

• Default representation in Maple, Mathematica, etc.

• Can be exponentially smaller than dense representation

For problems with fast algorithms in the dense representation,
– some are intractable for lacunary polynomials

(gcd, factoring, squarefreeness),

– some have fast but different algorithms for lacunary polynomials
(interpolation, finding roots or “small” factors),

– and for some we don’t know yet (irreducibility, divisibility testing)

Question. Given a multivariate polynomial f ∈ R[x1, . . . , xℓ],
how do we determine if f is a perfect power?

That is, are there h ∈ R[x1, . . . , xℓ] and r ≥ 2 such that f = hr?

• Detecting multi-precision integer perfect powers was studied by
Bach and Sorenson (1993), later by others
(most recently Bernstein et al. (2007)).

• Strong relationships to factoring and irreducibility testing

• Detecting sparse integer and lacunary polynomial perfect powers
stated as open problems by Shparlinski (2000).

For multivariate polynomials over Q or a finite field with
sufficiently large characteristic, we present Monte Carlo algorithms
to detect lacunary polynomials which are perfect powers.

That is, our algorithms are correct with controllably high probability
and always fast.

Input: f ∈ Z[x]
Output: An r such that f is an rth power,

or “FALSE” if f is not a perfect power.

1. for each possible prime power r do

2. Pick a prime p with p ∤ disc(f )

3. Pick a prime power q with r | q − 1

4. Choose random α1, . . . , α5 ∈ Fq

5. if f (α1)
(q−1)/r = · · · = f (α5)

(q−1)/r = 1 over Fq

6. return r

7. end do

8. return “FALSE”

Boring Details

• Steps 2–6 will actually be repeated O(log 1/ǫ) times
to guarantee success with probability 1 − ǫ.

• For Step 3, we can either find a random prime q such that p | q
and r | (q − 1), or choose q = pr−1 and work in an extension
field. The first approach yields better practical performance but
poorer theoretical results.

• If f ∈ F̺ for some prime power ̺, the same algorithm will work,
replacing p with ̺ and omitting Step 2.

• For f ∈ Q[x], choose the smallest b ∈ N such that bf ∈ Z[x].
Then bf is a perfect power iff f is, so we run the algorithm on
input bf .

• For f ∈ R[x1, . . . , xℓ], choose random values β2, . . . , βℓ ∈ R, and
then test whether f (x, β2, . . . , βℓ) ∈ R[x] is a perfect power.

Reduction: Since p ∤ disc(f ), f is an rth power over Z[x]
iff f is an rth power over Fp[x].

Detection: f (αi)
(q−1)/r = 1 iff f (αi) is an rth power in Fq.

Implication: Clearly if f = hr for some h and r ≥ 2,
then each f (α) is a perfect rth power in Fq.

The other direction is more interesting:

Theorem. Suppose f ∈ Fq[x] is not a perfect rth power, and
the degree of f is not more than 1 +

√
q/2.

Then, for a random α ∈ Fq, the probability that f (α) is a perfect
rth power in Fq is less than 3/4.

The proof uses an exponential character sum argument and the pow-
erful Weil’s Theorem for character sums with polynomial arguments.
Since (3/4)5 < 1/4, choosing 5 random evaluations guaranees suc-
cess with at least 3/4 probability.

• Speed of algorithm depends on how many r’s and how big

• Number of r’s is O(log deg f ) since all are
distinct prime divisors of deg f

• But can r be large?

Schinzel (1987) gives the following upper bound on r:

Fact. For f ∈ F[x] with t nonzero terms and deg f less than
the characteristic of F, r ≤ t − 1.

We have the following stronger result for integer polynomials:

Theorem. If f, h ∈ Z[x] such that f = hr, then ‖h‖2 ≤ ‖f‖1/r
1 .

For the proof, first note that the average value of |h(θ)|2
for a primitive pth root of unity θ (where p > deg h) is ‖h‖2

2.
Then there exists a θ with |θ| = 1 s.t. |h(θ)| ≥ ‖h‖2. Therefore

‖h‖2 ≤ |h(θ)| = |f (θ)|1/r ≤ ‖f‖1/r
1 .

Since ‖h‖2 ≥
√

2 in all nontrivial cases, this means r ≤ 2 log2 ‖f‖1.

How big is p? disc(f ) = res(f, f ′) ∈ O(n(log n + log ‖f‖2)), so
a prime with O(log n + log log ‖f‖∞) bits does not divide
the discriminant with high probability.

How many operations in Fq? The most costly step is
computing each f (αi)

(q−1)/r at Step 5. Computing each f (αi)
can be accomplished using O(t log n) operations in Fq,
and then these evaluations can be raised to the power (q − 1)/r
with an additional O(log q − log r) operations in Fq.

How costly are operations in Fq? If we choose q = pr−1

and work in a field extension modulo an irreducible polynomial
in Fp of degree r − 1, then each operation in Fq will cost
O (̃r log p) bit operations, which is O (̃r(log n + log log ‖f‖∞)).

Total Bit Complexity Finally, beacuse r ∈ O(log(t‖f‖∞)),
we have a total bit complexity of O (̃t log2 ‖f‖∞ log2 n), which is
polynomial in the lacunary size of f , as desired.

We used Victor Shoup’s NTL to implement and compare the per-
formance of the following three algorithms. This is a C++ library
which, when coupled with GMP, provides (probably) the fastest im-
plementations of arithmetic for dense univariate polynomials, multi-
precision integers, and finite fields.

Square-Free Decomposition For f ∈ Z[x], computes
d1, . . . , ds ∈ N and squarefree g1, . . . , gs ∈ Z[x] \ Z such that
f = gd1

1 gd2
2 · · · gds

s . So f is a perfect power iff gcd(d1, . . . , ds) > 1.

Newton Iteration Given f ∈ F[x] and r ∈ N, there is a unique
h ∈ F[x] such that hr ≡ f mod xn/r. For each possible r, we
compute such an h using a Newton Iteration taking log2(n/r) steps,
and then check whether h(α)r = f (α) for a randomly-chosen α ∈ F.
The result is a Monte Carlo algorithm similar to the one above.

Our Algorithm We also implemented the lacunary algorithm
described above. As NTL does not provide sparse polynomial arith-
metic, we had to implement a procedure to quickly evaluate a la-
cunary polynomial at a given point, using NTL for the underlying
field arithmetic.

Some timings for Square-Free Decomposition (black),

Newton Iteration (blue), and Lacunary Algorithm (red)

n = 1, 000 n = 10, 000 n = 100, 000
t ≈ 500 t = n + 1 t ≈ 500 t = n + 1 t ≈ 500 t = n + 1

r = 1 r = 5 r = 1 r = 5 r = 1 r = 5 r = 1 r = 5 r = 1 r = 5 r = 1 r = 5

S .0086 .0159 .0065 .0194 .2872 .2422 .1329 .3368 6.458 5.459 2.925 7.301

N .0029 .0035 .0034 .0046 .0557 .0643 .0848 .1060 1.183 1.432 1.544 1.971

L .0003 .0022 .0003 .0029 .0004 .0030 .0016 .0154 .0005 .0040 .0174 .1582

Newton iteration (blue) vs. Lacunary Alg. (red) for n = 10, 000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
im

e 
(s

ec
on

ds
)

2000 4000 6000 8000 10000

Sparsity

Timing Comparisons

E. Bach and J. Sorenson. Sieve algorithms for perfect power testing.
Algorithmica, 9(4):313–328, 1993.

D. Bernstein, H.W. Lenstra, Jr., and J. Pila. Detecting perfect
powers by factoring into coprimes. Math. Comp., 76(257):385–388
(electronic), 2007. ISSN 0025-5718.

M. Giesbrecht and D. Roche. On lacunary polynomial perfect pow-
ers. In ISSAC ’08 (submitted), 2008.

A. Schinzel. On the number of terms of a power of a polynomial.
Acta Arith., 49(1):55–70, 1987. ISSN 0065-1036.

I. Shparlinski. Computing Jacobi symbols modulo sparse integers
and polynomials and some applications. J. Algorithms, 36(2):241–
252, 2000. ISSN 0196-6774.


