Detecting Polynomial Perfect Powers

ORCCA	Waterloo	Mark Giesbrecht Daniel S. Roche	Symbolic Computation Group University of Waterloo Waterloo, Ontario, Canada	MITACS	

Why worry about this representation?

- Corresponds to intuition and how humans express polynomials - Default representation in Maple, Mathematica, etc.
- Can be exponentially smaller than dense representation

For problems with fast algorithms in the dense representation, -some are intractable for lacunary polynomials (gcd, factoring, squarefreeness)
some have fast but different algorithms for lacunary polynomials (interpolation, finding roots or "small" factors),

- and for some we don't know yet (irreducibility, divisibility testing)

Are You Perfect?

Question. Given a multivariate polynomial $f \in \mathrm{R}[x$
how do we determine if f is a perfect power?
That is, are there $h \in \mathrm{R}\left[x_{1}, \ldots, x_{\ell}\right]$ and $r \geq 2$ such that $f=h^{r}$?

Summary of Results

For multivariate polynomials over \mathbb{Q} or a finite field with sufficiently large characteristic, we present Monte Carlo algorithms to detect lacunary polynomials which are perfect powers.
That is, our algorithms are correct with controllably high probability and always fast.
$4 \quad$ Integer Polynomials Algorithm

Input: $f \in \mathbb{Z}[x]$ Output: An r such that f is an r th power, or "FALSE" if f is not a perfect power. 1. for each possible prime power r do 2. Pick a prime p with $p \nmid \operatorname{disc}(f)$ 3. Pick a prime power q with $r \mid q-1$ 4. Choose random $\alpha_{1}, \ldots, \alpha_{5} \in \mathbb{F}_{q}$ 5. \quad if $f\left(\alpha_{1}\right)^{(q-1) / r}=\cdots=f\left(\alpha_{5}\right)^{(q-1) / r}=1$ over \mathbb{F}_{q} 6. \quad return r 7. end do 8. return "FALSE"

Boring Details

- Steps 2-6 will actually be repeated $O(\log 1 / \epsilon)$ times
to guarantee success with probability $1-$
- For Step 3, we can either find a random prime q such that $p \mid q$ and $r \mid(q-1)$, or choose $q=p^{r-1}$ and work in an extension
field. The first approach yields better practical performance but field. The first approach
poorer theoretical results.
- If $f \in \mathbb{F}_{\varrho}$ for some prime power ϱ, the same algorithm will work replacing p with ϱ and omitting Step 2.
- For $f \in \mathbb{Q}[x]$, choose the smallest $b \in \mathbb{N}$ such that $b f \in \mathbb{Z}[x]$. Then $b f$ is a perfect power iff f is, so we run the algorithm on input $b f$.
\bullet For $f \in \mathrm{R}\left[x_{1}, \ldots, x_{\ell}\right]$, choose random values $\beta_{2}, \ldots, \beta_{\ell} \in \mathrm{R}$, and \bullet For $f \in \mathrm{R}\left(x_{1}, \ldots, x_{\ell}\right.$, choose
then test whether $f\left(x, \beta_{2}, \ldots, \beta_{\ell}\right) \in \mathrm{R}[x]$ is a perfect power.

5 Why it works

Reduction: Since $p \nmid \operatorname{disc}(f), f$ is an r th power over $\mathbb{Z}[x]$ iff f is an r th power over $\mathbb{F}_{p}[x]$.
Detection: $f\left(\alpha_{i}\right)^{(q-1) / r}=1$ iff $f\left(\alpha_{i}\right)$ is an r th power in \mathbb{F}_{q}.
Implication: Clearly if $f=h^{r}$ for some h and $r \geq 2$, then each $f(\alpha)$ is a perfect r th power in \mathbb{F}_{q}.
The other direction is more interesting:
Theorem. Suppose $f \in \mathbb{F}_{q}[x]$ is not a perfect rth power, and
Theorem. Suppose $f \in \mathbb{F}_{q}[x]$ is not a perfect
the degree of f is not more than $1+\sqrt{q} / 2$. Then, for a random $\alpha \in \mathbb{F}_{q}$, the probability that $f(\alpha)$ is a perfect rth power in \mathbb{F}_{q} is less than 3/4.
The proof uses an exponential character sum argument and the powerful Weil's Theorem for character sums with polynomial arguments. Since $(3 / 4)^{5}<1 / 4$, choosing 5 random evaluations guaranees suc
cess with at least $3 / 4$ probability.

6 How high can the power be?

- Speed of algorithm depends on how many r 's and how big - Number of r 's is $O(\log \operatorname{deg} f)$ since all are
distinct prime divisors of $\operatorname{deg} f$
- But can r be large?

Schinzel (1987) gives the following upper bound on r : Fact. For $f \in \mathrm{~F}[x]$ with t nonzero terms and $\operatorname{deg} f$ less than the characteristic of $\mathrm{F}, r \leq t-1$.
We have the following stronger result for integer polynomials: Theorem. If $f, h \in \mathbb{Z}[x]$ such that $f=h^{r}$, then $\|h\|_{2} \leq\|f\|_{1}^{1 / r}$
For the proof, first note that the average value of $|h(\theta)|^{2}$ for a primitive p th root of unity θ (where $p>\operatorname{deg} h)$ is $\|h\|_{2}^{2}$. . Then there exists a θ with $|\theta|=1$ s.t. $|h(\theta)| \geq\|h\| \|$

$$
\|h\|_{2} \leq|h(\theta)|=|f(\theta)|^{1 / r} \leq\|f\|_{1}^{1 / r}
$$

Since $\|h\|_{2} \geq \sqrt{2}$ in all nontrivial cases, this means $r \leq 2 \log _{2}\|f\|_{1}$.

Complexity

How big is p ? $\quad \operatorname{disc}(f)=\operatorname{res}\left(f, f^{\prime}\right) \in O\left(n\left(\log n+\log \|f\|_{2}\right)\right)$, How big is p ? $\operatorname{disc}(f)=\operatorname{res}(f, f) \in O(n(\log n+\log \| f$
a prime with. $O\left(\log n+\log \log \|f\|_{\infty}\right)$ bits does not divide the discriminant with high probability.
How many operations in \mathbb{F}_{q} ? The most costly step is computing each $f\left(\alpha_{i}\right)^{(q-1) / r}$ at Step 5 . Computing each $f\left(\alpha_{i}\right)$ can be accomplished using $O(t \log n)$ operations in \mathbb{F}_{q}, and then these evaluations can be raised to the power $(q-1) / r$
with an additional $O(\log q-\log r)$ with an additional $O(\log q-\log r)$ operations in \mathbb{F}_{q}
How costly are operations in \mathbb{F}_{q} ? If we choose $q=p^{r-1}$ and work in a field extension modulo an irreducible polynomial in \mathbb{F}_{p} of degree $r-1$, then each operation in \mathbb{F}_{q} will cost $O^{\sim}(r \log p)$ bit operations, which is $O^{\sim}\left(r\left(\log n+\log \log \|f\|_{\infty}\right)\right)$
Total Bit Complexity Finally, beacuse $r \in O\left(\log \left(t\|f\|_{\infty}\right)\right.$, we have a total bit complexity of $O^{\sim}\left(t \log ^{2}\|f\|_{\infty} \log ^{2} n\right)$, which is
polynomial in the lacunary size of f, as desired.

Implementation

We used Victor Shoup's NTL to implement and compare the performance of the following three algorithms. This is a C++ library which, when coupled with GMP, provides (probably) the fastest implementations of arithmetic for dense univariate polynomials, multi-

Algorithms to Compare

 $f=g_{1}^{d_{1}} g_{2}^{d_{2}} \cdots g_{s}^{d_{s}}$. So f is a perfect power iff $\operatorname{gcd}\left(d_{1}, \ldots, d_{s}\right)>1$. Newton Iteration Given $f \in \mathrm{~F}[x]$ and $r \in \mathbb{N}$, there is a unique $h \in \mathrm{~F}[x]$ such that $h^{r} \equiv f \bmod x^{n / r}$. For each possible r, we compute such an h using a Newton Iteration taking $\log _{2}(n / r)$ steps, The result is a Monte Carlo algorithm similar to the one above The rest in Our Algorithm We also implemented the lacunary algorithm described above. As NTL does not provide sparse polynomial arithmetic, we had to cunary polynomial at a given point, using
field arithmetic.

References

E. Bach and J. Sorenson. Sieve algorithms for perfect power testing. Algorithmica, 9(4):313-328, 1993.
D. Bernstein, H.W. Lenstra, Jr., and J. Pila. Detecting perfect D. Bernstein, H.W. Lenstra, Jr., and J. Pila. Detecting perfect powers by factoring into coprimes.
(electronic), 2007. ISSN 0025-5718.
M. Giesbrecht and D. Roche. On lacunary polynomial perfect powers. In ISSAC '08 (submitted), 2008
A. Schinzel. On the number of terms of a power of a polynomial. A. Schinzel. On the number of terms of a power
Acta Arith., 49(1):55-70, 1987. ISSN 0065-1036.
I. Shparlinski. Computing Jacobi symbols modulo sparse intege and polynomials and some applications. J. Algorithms, 36(2):241-

