POPE: Partial Order Preserving Encoding

Daniel S. Roche* Daniel Aponf Seung Geol Choi*
Arkady Yerukhimovichi

% |2l

*U.S. Naval Academy +University of Maryland #MIT Lincoln Laboratory

ACM CCS 2016
Vienna, Austria

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016

1/23

Problem: Encrypting a Database Index

Cloud databases are popular for many reasons:
m Low cost

m High availability
m High performance
E ...

But these systems are regularly compromised by attackers.
(Consider just voter databases in the last year!)

Challenge: Securing data without compromising performance (too much)

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 2/23

Tradeoffs and Choices

Features
(Query support, multi/single user)

Performance
(Server time/memory, client time/memory, transfer size, rounds)

Privacy
(What might be leaked? What kind of adversary?)

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 3/23

Goals

Our Target Features

This work focuses on a common big data scenario:
m Many insertions (should be as fast as possible)
m Fewer lookups or range queries

Data: Key/value store, i.e. all queries on a single column.

Example Dataset

4 million employees, with lookups by salary.
(California public employees database)

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 4/23

This talk

Focusing on many insertions and fewer range queries:

Existing approaches, performance/privacy tradeoffs

Our construction: POPE
Provides a new compromise between performance and privacy

Evaluation and experiments

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 5/23

Context POPE Construction

Context of POPE

Our target: Many insertions,

: performance
few range queries ~ ‘
. TBscale| -1 ----F---~---—~
Current options: ‘ ‘ |
m No encryption eBscalel -~
m Traditional OPE o
m PPE, ORE, or Interactive ~ MBscale| -~~~
OPE l l l
= ORAMs KBscale f -5----1---------
m Encrypt the entire l l l o
database & @ & » privacy
e\éb e}\@(b e\?:b
POPE will provide a new N

compromise in this space

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 6/23

Storing keys in plaintext

Trivial solution:

Store keys in plaintext, performance

N ! ! g
encrypt payloads only T8 scale | - oo laINtEXE
| | |
| | |
Possible with any existing : l l
. EBgER |tttk =c==
cloud database solution. ; ; :
| | |
MBscale | -1----r---------
| | |
l l l
KBscale f -5----1---------
l l l _
‘ ‘ ‘ » privacy
& @ &
& & &
& & &
e

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 7123

Order-Preserving Encryption (OPE)

Idea: erformance
Can compare keys by P ~A :
comparing ciphertexts. TBscale | - oPlAINtEXE
These schemes are used in 6B scale I -) OOPE . 77777
industry today! | | 1
Hot topic: MBscale} = —mr
m Agrawal et. al.’04 | | 1
KBscalefp-----7-~--———---~-
m Baldyreva et. al., ’09, ’11 ; ; ;
m Mavroforakis et. al., '15 1 1 1 » privacy
m Lewi & Wu '16 (ORE) &
& &)
\{gﬁ éb é{l«e

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 8/23

Order-Preserving Encryption (OPE)

Idea: erformance
Can compare keys by P a ‘
comparing ciphertexts. TBscale | - oPlAINtEXE
These schemes are used in . °OPE |
. GBscalef —+— - -+~~~ -1-— -
industry today! ; ; ;
Hot topic for attacks: MBscale | ===
m Baldyreva et. al.’11 3 3 3
Mgl |f=r====r====s=====
m Naveed et. al.’15 : : :
m Durak et. al.’16 1 1 1 » privacy
m Grubbs et. al."16 \&@ \Qq;é”é \gf
& &)
N

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 8/23

Context POPE Construction

Interactive OPE

\dea: erformance
Use an interactive protocol to P . ‘ ‘
compare ciphertexts TBscale | - oPlAINtEXE
Achieves ideal security - *OPE |
. EBgER |tttk =c==
leaking only the order ; ; :
; Jnteractive OPE
MBscalefp -+~ - --r--- -~~~
m Popa et. al.’13 } } ;
m Kerschbaum et. al., '14 KB scale ,,,i,,,,i,,,,,i ,,,,,
m Kerschbaum ’15 | | |
m Boelter '16 ‘ ‘ ‘
& & @
e\e’b J\\@’b e\éb-
(Ideal ORE of Boneh et. al.’'15 N

fits most closely here.)

Roche, Apon, Choi, Yerukhimovich (USA) POPE

QOctober 27, 2016

9/23

Context

Oblivious RAM (ORAM)

Idea:

. erformance
Store data structure in an P

ORAM to hide access patterns 1gqcaic | - o-laiNtEXt
eope
GB scale [FH====kessskasss
m Goldreich & Ostrovsky '96 ! ! L
y ; Jnteractive OPE
m Stefanov et. al. '13 MBscale f -~~~ -~ Sy
m Wang et. al. '14 l l l
m Devadas et. al. '15 KBscale | =y----r---"m---
m R., Aviv, Choi 16 ‘ ! ! ot
> > >
...and many more! \e,;g \06@ \06@
R be} P
e

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 10/23

Encrypt the whole thing

Trivial solution:

Download and re-encrypt the
whole database on each TB scale
access ! !

performance

N ; . ' ;
| JPlaintext |

1
GBscalef-+----+--—--1-----

|
MBscaIef—w‘—fff R
|
|
|
|

KBscaep -~ - - - -L-----_-©__

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 11/23

This talk: Partial Order Preserving Encoding

Our idea:
. performance
Only perform comparisons a ‘ ‘
necessary to execute the TBscale | - oPlAINtEXE
ueries. l l l
a . eOPE

|
GBscae}-+----+- oPOPE- -
Improves performance | | ‘

and security compared to
interative OPE

|
|
MBscaIef—w‘—fff R
|
|
|
|

KBscaep -~ - - - -L--- - _@__

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 12/23

Goals Context

POPE Data Structure

POPE Construction

Main Idea
Server stores a partially ordered B-tree

Every node contains an unordered buffer of key/value pairs

|
m Non-leaf nodes also have a small ordered list of ciphertexts
m Encryption uses any (randomized) symmetric cipher

|

Client performs comparisons at query-time

Influences:
m Buffer trees (Arge '03)
m Mutable OPE (Popa, Li, Zeldovich '13)

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016

13/23

POPE Construction

Initial insertions

Inserted ciphertexts are appended (unordered) to the root node.

Server
Client

Insert(89)

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 14/23

POPE Construction

Initial insertions

Inserted ciphertexts are appended (unordered) to the root node.

Server
Client
Insert(42)
212
89|42

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 14/23

Range search Base case

For a small leaf node, send the entire node to the client.

Server
Client
Range(40,50)
2|2
89|42
M 42

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 15/23

POPE Construction

More insertions

Further insertions are appended to the root.

Server
Client

Insert(...)

89142|55(93|77|13]69 |41

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 16/23

Splitting leaf nodes

Searching a large leaf node requires splitting.

Server
Client

Range(0,20)

89142|55(93|77|13]69 |41

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 17/23

Splitting leaf nodes

1. Server promotes m random items and sends to client.

Server
Client
5?5 4?1 Range(0,20)
2022222
89(42|93(77[13|69

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 17/23

Splitting leaf nodes

2. Client sorts, stores, and remembers the m items.

Server
Client
112l Range(0,20)
41|55
2[2[2]2[2]2 (1] 2
89(42|93(77(13]69 41|55

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 17/23

Splitting leaf nodes

3. Client partitions remaining items.

Server
Client
112 Range(0,20)
41]55 i
02| [1.2] [27]272]|2.72|2.7], J1]2
13| [42]| [89]93[77]69] “l41]55]

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 17/23

Splitting leaf nodes

4. Finally, the range query results are returned.

Server

Client

Range(0,20)

02| [1.2] [272]|2.2]272]22
13 89]93]77]69

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 17/23

POPE Construction

More insertions

Further insertions are appended to the root.

Server
Client
11212 2|9
- Insert(. ..
41]55|24|57 (16 sert(...)

0.? 1.7 2.7]12.7|2.7|2.7
13 42 89|93 |77 |69

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 18/23

Range query

Queries start by partitioning the root buffer to child nodes.

Server
Client
411 525 2?4 5?7 16 Range(60,70)
02| [1.2] [22]2.2]2.2]2.2 J1]2
13| [42| [89]93|77]69 4155

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 19/23

Range query

Queries start by partitioning the root buffer to child nodes.

Server
Client
112 Range(60,70)
41]55 ’
0.?/0.2]0.2 1.2 2.7|2.7|2.2]2.2]22], 1]2
13]24 | 16 89|93]77]|69 |57 [4155]

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 19/23

Range query

This may result in further leaf node splits.

Server
Client
411 525 537 g, Range(60,70)
0.2[0.2]0.? 1.2 H 32[32] [42],
13]24] 16 77] 69 93 [157]89]

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 19/23

Range query

The sorted parts of nodes are not allowed to get too large.

Server
Client
_ Range(60,70)
3[4
57|89

0.7/0.7]0.?
13|24 |16

3.7(3.?
77 | 69

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 19/23

Performance

While some queries may be costly due to interactive partitioning,
the average cost per operation is optimal:

Amortized Analysis

The average cost per operation is O(1), and
the worst-case round complexity per operation is O(1), assuming:

B 7 insertions

m Reasonable client-side temporary storage
(L € QM)

= Not too many range queries
(m<7)

Results

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016

20/23

Experimental Performance

thousands of ops per second

160
140
120
100
80
60
40
20

POPE, repeated queries
POPE, bunched queries =—3¢—
POPE, random queries =—6—

103 10° 106
number of entries

Note: Number of queries was +/n in all cases.

Roche, Apon, Choi, Yerukhimovich (USA) POPE

QOctober 27, 2016

21/23

Goals

POPE Security

Results

Server cannot learn more than the order of the keys.
(IND-OCPA notion of Boldyreva et. al. '11, achieved by Popa et. al. ’13)

Tie-breaking randomness hides key frequencies also.
(IND-FAOCPA of Kerschbaum ’15)

Only a partial order is leaked.

Under previous assumptions of n insertions, m queries and
client storage L, the relative order between at least

2
Q(n— - n)
mL

pairs of elements is not revealed.

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 22/23

Thanks!

The Paper

Daniel S. Roche, Daniel Apon, Seung Geol Choi,
and Arkady Yerukhimovich
“POPE: Partial Order Preserving Encoding”
https://arxiv.org/abs/1610.04025

Code: https://github.com/dsroche/pope

Thanks to: National Science Foundation, Office of Naval Research

Roche, Apon, Choi, Yerukhimovich (USA) POPE QOctober 27, 2016 23/23

https://arxiv.org/abs/1610.04025
https://github.com/dsroche/pope

	Goals
	Context
	POPE Construction
	Results

