
Introduction Background Chunky Implementation Interpolation

Between Sparse and Dense Arithmetic

Daniel S. Roche

Computer Science Department
United States Naval Academy

NARC Seminar
November 28, 2012

Introduction Background Chunky Implementation Interpolation

The Problem

People want to compute with really big numbers and polynomials.

Two basic choices for representation:

• Dense — wasted space, but fast algorithms

• Sparse — compact storage, slower algorithms

The goal: Alternative representations and algorithms that go
smoothly between these two options

Introduction Background Chunky Implementation Interpolation

Application: Cryptography

Public key cryptography is used extensively in communications.
There are two popular flavors:

RSA

Requires integer
computations modulo a large
integer (thousands of bits).
Long integer multiplication
algorithms are generally the
same as those for (dense)
polynomials.

ECC

Usually requires
computations in a finite
extension field — i.e.
computations modulo a
polynomial (degree in the
hundreds).

In both cases, sparse integers/polynomials are used to make
schemes more efficient.

Introduction Background Chunky Implementation Interpolation

Application: Nonlinear Systems

Nonlinear systems of polynomial equations can be used to
describe and model a variety of physical phenomena.

Numerous methods can be used to solve nonlinear systems, but
usually:

• Inputs are sparse multivariate polynomials

• Intermediate values become dense.

One approach (used in triangular sets) simply switches from
sparse to dense methods heuristically.

Introduction Background Chunky Implementation Interpolation

Current Focus: Polynomial Multiplication

• Addition/subtraction of polynomials is trivial.

• Division uses multiplication as a subroutine.

• Multiplication is the most important basic computational
problem on polynomials.

More application areas

• Coding theory

• Symbolic computation

• Scientific computing

• Experimental mathematics

Introduction Background Chunky Implementation Interpolation

What is a polynomial?

A polynomial is any formula involving +,−,× on indeterminates
and constants from a ring R.

Examples with integer coefficients (R = Z)

x10 + x9 + x8 + x7 + x6 + 1

4x10 − 3x8 − x7 + 3x6 + x5 − 2x4 + 2x3 + 5x2

x451 − 9x324 − 3x306 + 9x299 + 4x196 − 9x155 − 2x144 + 10x27

x426 − 6x273y399z2 + 10x246yz201 − 10x210y401 − 3x21yz − 9z12

Introduction Background Chunky Implementation Interpolation

What is a polynomial?

A polynomial is any formula involving +,−,× on indeterminates
and constants from a ring R.

Examples with integer coefficients (R = Z)

x10 + x9 + x8 + x7 + x6 + 1

4x10 − 3x8 − x7 + 3x6 + x5 − 2x4 + 2x3 + 5x2

x451 − 9x324 − 3x306 + 9x299 + 4x196 − 9x155 − 2x144 + 10x27

x426 − 6x273y399z2 + 10x246yz201 − 10x210y401 − 3x21yz − 9z12

Introduction Background Chunky Implementation Interpolation

What is a polynomial?

A polynomial is any formula involving +,−,× on indeterminates
and constants from a ring R.

Examples with integer coefficients (R = Z)

x10 + x9 + x8 + x7 + x6 + 1

4x10 − 3x8 − x7 + 3x6 + x5 − 2x4 + 2x3 + 5x2

x451 − 9x324 − 3x306 + 9x299 + 4x196 − 9x155 − 2x144 + 10x27

x426 − 6x273y399z2 + 10x246yz201 − 10x210y401 − 3x21yz − 9z12

Introduction Background Chunky Implementation Interpolation

What is a polynomial?

A polynomial is any formula involving +,−,× on indeterminates
and constants from a ring R.

Examples with integer coefficients (R = Z)

x10 + x9 + x8 + x7 + x6 + 1

4x10 − 3x8 − x7 + 3x6 + x5 − 2x4 + 2x3 + 5x2

x451 − 9x324 − 3x306 + 9x299 + 4x196 − 9x155 − 2x144 + 10x27

x426 − 6x273y399z2 + 10x246yz201 − 10x210y401 − 3x21yz − 9z12

Introduction Background Chunky Implementation Interpolation

Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Dense representation:
0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 1

Degree d
n variables

t nonzero terms

Dense size:
O(dn) coefficients

O(tn log d) bits

Introduction Background Chunky Implementation Interpolation

Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Recursive dense representation:
0 5 0 0

0 0 0 0

0 0 0 0

0 0 6 0

0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

7 0 0 0 0 0 0 0 0 0 1

Degree d
n variables

t nonzero terms

Recursive dense size:
O(tdn) coefficients

O(tn log d) bits

Introduction Background Chunky Implementation Interpolation

Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Sparse representation:

0 8 2 5 0

0 1 6 6 10

7 5 2 6 1

Degree d
n variables

t nonzero terms

Sparse size:
O(t) coefficients
O(tn log d) bits

Introduction Background Chunky Implementation Interpolation

Aside: Cost Measures

Measure of Success

The “cost” of an algorithm is measured as its
rate of growth as the input size increases.

Most relevant costs:

• O(n): Linear time
Intractable when n ≥ 1012 or so.

• O(n log n): Linearithmic time
Intractable when n ≥ 1010 or so.

• O(n2): Quadratic time
Intractable when n ≥ 106 or so.

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

996
332

+

664
70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

99

6

332

+

664
70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

9

96

332

+

664
70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

996

332

+

664
70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

996
332

+

664

70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Direct Multiplication

Most methods work by directly multiplying coefficients, adding
them up, and so on.

Example: “School” Multiplication

332
× 213

996
332

+ 664
70716

Total cost:
O(n2)

(quadratic)

Introduction Background Chunky Implementation Interpolation

Indirect Multiplication
Some faster methods do their work in an alternate representation:

1 Convert input polynomials to alternate representation
2 Multiply in the alternate representation
3 Convert the product back to the original form

FFT-Based Multiplication mod 5

f = 2 x + 3 g = x2 + 2 x + 3

1 Evaluate each polynomial at x = 1, 3, 4, 2:
falt = [0, 4, 1, 2] galt = [1, 3, 2, 1]

2 Multiply the evaluations pairwise:
(fg)alt = [0, 2, 2, 2]

3 Interpolate at x = 1, 3, 4, 2:
fg = 2 x3 + 2 x2 + 2 x + 4

Introduction Background Chunky Implementation Interpolation

Indirect Multiplication
Some faster methods do their work in an alternate representation:

1 Convert input polynomials to alternate representation
2 Multiply in the alternate representation
3 Convert the product back to the original form

FFT-Based Multiplication mod 5

f = 2 x + 3 g = x2 + 2 x + 3

1 Evaluate each polynomial at x = 1, 3, 4, 2:
falt = [0, 4, 1, 2] galt = [1, 3, 2, 1]

2 Multiply the evaluations pairwise:
(fg)alt = [0, 2, 2, 2]

3 Interpolate at x = 1, 3, 4, 2:
fg = 2 x3 + 2 x2 + 2 x + 4

Introduction Background Chunky Implementation Interpolation

Indirect Multiplication
Some faster methods do their work in an alternate representation:

1 Convert input polynomials to alternate representation
2 Multiply in the alternate representation
3 Convert the product back to the original form

FFT-Based Multiplication mod 5

f = 2 x + 3 g = x2 + 2 x + 3

1 Evaluate each polynomial at x = 1, 3, 4, 2:
falt = [0, 4, 1, 2] galt = [1, 3, 2, 1]

2 Multiply the evaluations pairwise:
(fg)alt = [0, 2, 2, 2]

3 Interpolate at x = 1, 3, 4, 2:
fg = 2 x3 + 2 x2 + 2 x + 4

Introduction Background Chunky Implementation Interpolation

Indirect Multiplication
Some faster methods do their work in an alternate representation:

1 Convert input polynomials to alternate representation
2 Multiply in the alternate representation
3 Convert the product back to the original form

FFT-Based Multiplication mod 5

f = 2 x + 3 g = x2 + 2 x + 3

1 Evaluate each polynomial at x = 1, 3, 4, 2:
falt = [0, 4, 1, 2] galt = [1, 3, 2, 1]

2 Multiply the evaluations pairwise:
(fg)alt = [0, 2, 2, 2]

3 Interpolate at x = 1, 3, 4, 2:
fg = 2 x3 + 2 x2 + 2 x + 4

Introduction Background Chunky Implementation Interpolation

Dense Multiplication Algorithms
Cost (in ring operations) of multiplying two univariate dense
polynomials with degrees less than d:

Cost Method

Classical Method O(d2) Direct

Divide-and-Conquer
Karatsuba ’63

O(dlog2 3) or O(d1.59) Direct

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(d log d llog d) Indirect

We write M(d) for this cost.

Introduction Background Chunky Implementation Interpolation

Sparse Multiplication Algorithms

Cost of multiplying two univariate sparse polynomials with degrees
less than d and at most t nonzero terms:

Cost Method

Naı̈ve O(t3 log d) Direct

Geobuckets
(Yan ’98)

O(t2 log t log d) Direct

Heaps
(Johnson ’74)

(Monagan & Pearce ’07)
O(t2 log t log d) Direct

Introduction Background Chunky Implementation Interpolation

Adaptive multiplication

Goal: Develop new algorithms whose cost smoothly varies
between existing dense and sparse methods.

Ground rules

1 The cost must never be greater than any standard dense or
sparse algorithm.

2 The cost should be less than both in many “easy cases”.

Primary technique: Develop indirect methods for the sparse case.

Introduction Background Chunky Implementation Interpolation

Overall Approach

Overall Steps

1 Recognize structure

2 Change rep. to
exploit structure

3 Multiply

4 Convert back

• Step 3 cost depends
on instance difficulty.

• Steps 1, 2, 4 must be
fast (linear time).

Introduction Background Chunky Implementation Interpolation

Chunky Polynomials

Example

• f = 5x6 + 6x7 − 4x9 − 7x52 + 4x53 + 3x76 + x78

• f1 = 5 + 6x − 4x3, f2 = −7 + 4x, f3 = 3 + x2

• f = f1x6 + f2x52 + f3x76

Introduction Background Chunky Implementation Interpolation

Chunky Polynomials

Example

• f = 5x6 + 6x7 − 4x9 − 7x52 + 4x53 + 3x76 + x78

• f1 = 5 + 6x − 4x3, f2 = −7 + 4x, f3 = 3 + x2

• f = f1x6 + f2x52 + f3x76

Introduction Background Chunky Implementation Interpolation

Chunky Multiplication
Sparse algorithms on the outside, dense algorithms on the inside.
• Exponent arithmetic stays the same.
• Coefficient arithmetic is more costly.
• Terms in product may have more overlap.

Theorem

Given
f = f1xe1 + f2xe2 + · · · + ftxet

g = g1xd1 + g2xd2 + · · · + gsxds ,

the cost of chunky multiplication (in ring operations) is

O
(∑

deg fi≥deg gj
1≤i≤t, 1≤j≤s

(deg fi) ·M
(
deg gj

deg fi

)
+

∑
deg fi<deg gj
1≤i≤t, 1≤j≤s

(deg gj) ·M
(

deg fi
deg gj

))
.

Introduction Background Chunky Implementation Interpolation

Conversion to the Chunky Representation

Initial idea: Convert each operand independently,
then multiply in the chunky representation.

But how to minimize the nasty cost measure?

Theorem

Any independent conversion algorithm must result in slower
multiplication than the dense or sparse method in some cases.

Introduction Background Chunky Implementation Interpolation

Two-Step Chunky Conversion
First Step: Optimal Chunk Size

Suppose every chunk in both operands was forced to have the
same size k.

This simplifies the cost to t(k) · s(k) ·M(k),
where t(k) is the least number of size-k chunks to make f .

First conversion step:
Compute the optimal value of k to minimize this simplified cost
measure.

Introduction Background Chunky Implementation Interpolation

Computing the optimal chunk size

Optimal chunk size computation algorithm:

1 Create two min-heaps with all “gaps” in f and g,
ordered on the size of resulting chunk if gap were removed.

2 Remove all gaps of smallest priority and update neighbors

3 Approximate t(k), s(k) by the size of the heaps,
and compute t(k) · s(k) ·M(k)

4 Repeat until no gaps remain.

With careful implementations, this can be made linear-time in
either the dense or sparse representation.
Constant factor approximation; ratio is 4.

Observe: We must compute the cost of dense multiplication!

Introduction Background Chunky Implementation Interpolation

Computing the optimal chunk size

Optimal chunk size computation algorithm:

1 Create two min-heaps with all “gaps” in f and g,
ordered on the size of resulting chunk if gap were removed.

2 Remove all gaps of smallest priority and update neighbors

3 Approximate t(k), s(k) by the size of the heaps,
and compute t(k) · s(k) ·M(k)

4 Repeat until no gaps remain.

With careful implementations, this can be made linear-time in
either the dense or sparse representation.
Constant factor approximation; ratio is 4.

Observe: We must compute the cost of dense multiplication!

Introduction Background Chunky Implementation Interpolation

Two-Step Chunky Conversion
Second Step: Conversion given chunk size

After computing “optimal chunk size”, conversion proceeds
independently.

We compute the optimal chunky representation for multiplying
by a single size-k chunk.

Idea: For each gap, maintain a linked list of all previous gaps
to include if the polynomial were truncated here.

Algorithm: Increment through gaps, each time finding
the last gap that should be included.

Introduction Background Chunky Implementation Interpolation

Conversion given optimal chunk size

The algorithm uses two key properties:

• Chunks larger than k bring no benefit.

• For smaller chunks, we want to minimize
∑

i

M(deg fi)
deg fi

.

Theorem

Our algorithm computes the optimal chunky representation
for multiplying by a single size-k chunk.

Its cost is linear in the dense or sparse representation size.

Introduction Background Chunky Implementation Interpolation

Chunky Multiplication Overview

Input: f , g ∈ R[x], either in the sparse or dense representation
Output: Their product f · g, in the same representation

1 Compute approximation to “optimal chunk size” k,
looking at both f and g simultaneously.

2 Convert f to optimal chunky representation
for multiplying by a single size-k chunk.

3 Convert g to optimal chunky representation
for multiplying by a single size-k chunk.

4 Multiply pairwise chunks using dense multiplication.

5 Combine terms and write out the product.

Introduction Background Chunky Implementation Interpolation

Timings vs “Chunkiness”

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

Ti
m

e
ov

er
de

ns
e

tim
e

Chunkiness

Dense
Sparse

Adaptive

Introduction Background Chunky Implementation Interpolation

Timings without imposed chunkiness

0.001

0.01

0.1

1

10

100

10000 100000 1e+06 1e+07 1e+08

Ti
m

e
(s

ec
on

ds
)

Degree
Sparsity 10000 3000 1000 300 100

Dense
Sparse

Adaptive

Introduction Background Chunky Implementation Interpolation

The Ultimate Goal?

Adaptive methods go between linearithmic-time dense algorithms
and quadratic-time sparse algorithms.

• Output size of dense multiplication is always linear.

• Output size of sparse multiplication is at most quadratic,
but might be much less

• Can we have linearithmic output-sensitive cost?

Note: This is the best we can hope for and would generalize the
“chunky” approach.

Introduction Background Chunky Implementation Interpolation

Summary

• New indirect multiplication methods to go between existing
sparse and dense multiplication algorithms.

• Chunky multiplication is never (asymptotically) worse than
existing approaches, but can be much better in well-structured
cases.

• Recent results on sparse FFTs and sparse interpolation may
lead to a significant breakthrough in theory.

• Much work remains to be done!

