
New Algorithms for

Lacunary (Supersparse) Polynomials
Sparsest Shift Interpolation and Sparse Functional Decomposition

Daniel Roche Mark Giesbrecht

University of Waterloo

31 May 2007

Page 2 of 20

Representation of Sparse Polynomials

Let F be a field and f (x) ∈ F[x] of degree n.
f (x) in dense form is

f (x) = f0 + f1x + f2x
2 + · · ·+ fnx

n.

f (x) in sparse form is

f (x) = a1x
e1 + a2x

e2 + · · · + atx
et

ai ’s nonzero in F

ei ’s in Z with e1 < e2 < . . . < et = n

t is the sparsity of f (x)

Sparse size is
∑t

i=1(size(ai) + lg ei)

Can be exponentially smaller than the dense size

This representation is the default in Maple, Mathematica, etc.

Page 3 of 20

Alternate Notions of Sparsity

Definition (Sparse Shifts)

If f (x) has at most t nonzero terms in the shifted power basis
1, (x − α), (x − α)2, . . ., for some α ∈ F, then we say
α is a t-sparse shift for f (x).

Theorem (Lakshman & Saunders [LS96])

If t ≤ d+1
2 , then there is at most one t-sparse shift

for any polynomial f (x) ∈ F[x].

Definition (Black Box)

A black box for a polynomial f (x) ∈ F[x] is a procedure which,
when given any element θ ∈ F, returns the value of f (θ).

Page 4 of 20

Polynomial-Time Operations

Basic Arithmetic Addition, subtraction, multiplication

Division Euclidian division (quotient and remainder) —
polynomial time in the size of the
input and output polynomials.

Interpolation Determine a sparse polynomial from its black box,
provided we can compute logarithms in F
[BOT88, KL03]

Root Finding Find all distinct low-degree factors [CKS99, Len99]

Page 5 of 20

Intractable Operations

Exponentiation Raising a sparse polynomial to the r ’th power
could increase the size of the output
by an exponential factor.

Factorization The factors could be dense,
meaning the operation could be exponential.

GCD Provably hard to determine even if the GCD
of two sparse polynomials is 1 [Pla84]

Divisibility? A polynomial-time divisibility test for sparse
polynomials is a basic open question in this area.

Page 6 of 20

Sparsest Shift Interpolation

First polynomial-time algorithm to compute sparsest shift
α of f (x) given in [LS96], later improved in [GKL03].

Requires that f (x) be given explicitly in dense form.

Question

Can we find the sparsest shift α of a polynomial f (x) ∈ F[x],
given a black box for f (x) and using time polynomial in the
size of the sparsest shift?

We have a solution to a particular instance of this problem:
Let f (x) ∈ Z[x], and suppose we are given a black box
which takes θ ∈ Z and prime p, and returns f (θ) mod p.

Page 7 of 20

Preliminaries

Let p be a prime with p ≥ t2.
From Fermat’s Little Theorem,
ap−1 ≡ 1 mod p whenever p ∤ a.
So ∃ fp(x) ∈ Zp[x] of degree at most p − 2
such that fp(θ) ≡ f (θ) mod p for all θ ∈ Z.

If f (x) =
∑t

i=1 ai(x − α)ei , then

fp(x) =
t

∑

i=1

(ai mod p) (x − (α mod p))ei mod (p−1)
,

and therefore α is a t-sparse shift for fp(x).

Page 8 of 20

Algorithm: Sparsest Shift Interpolation

1 Choose a prime p from a sufficiently large set
such that t2 < p < tO(1).

2 Use the black box to compute vi = f (i) mod p

for i = 1, 2, . . . , p − 1.

3 Use (dense) Lagrange interpolation to find fp(x).

4 If deg(fp(x)) ≥ 2t − 1, then use the algorithm from [GKL03]
to find the sparsest shift αp in Zp.

5 Repeat O(log α) times until α can be recovered
from the αp’s via Chinese Remaindering

Page 9 of 20

Comments on the algorithm

If deg(fp(x)) ≥ 2t − 1, then we know from [LS96]
that α mod p is the sparsest shift, since it is
a t-sparse shift (from before).

α must be the root of n − t derivatives of f (x).
Roots of any derivative of f (x) in Z are bounded by the
maximal and minimal roots of f (x) itself, which in turn must
divide the trailing coefficient of f (x).
So the size of α is less than the size of f (x).

The tricky part of the analysis is constructing the
set of primes S in such a way that deg fp ≥ 2t − 1
with high probability (not shown here).

Algorithm runs in polynomial time in
the sparse size of f (x + α).

Page 10 of 20

Polynomial Decomposition

The problem of (simple) functional decomposition
of polynomials is, given f (x) ∈ F[x], find g(x), h(x) ∈ F[x],
each with degree at least 2, such that f (x) = g(h(x)).

Functional Decomposition Algorithms

Univariate [KL89, vzG90]

Rational functions [Zip91]

Sparsest complete decomposition [LS96]

Algebraic functions [KLZ96]

Multivariate [vzGGR03, FJ06]

All of these algorithms take polynomial time in the degree of f .
Can we compute a simple univariate decomposition in
polynomial time in the sparse size of f ?

Page 11 of 20

Problem Statement and Simplifications

Problem

Given f (x), find g(x) and h(x) such that f (x) = g(h(x)).

f (x) is given in the α-shifted power basis

g(x) is returned in the sparsest shifted power basis, β

h(x) is returned in the α-shifted power basis

Polynomial time in the size of the input and output

Can assume that f , g , h are all monic and α = β = 0, since

f (x + α)

lc(f)
=

(

g (lc(h)(x + β))

lc(f)

)

◦

(

h(x + α)

lc(h)
− β

)

(lc(f) and lc(h) are leading coefficients of f (x) and h(x))

Page 12 of 20

Finding h(x) of low degree

Lemma 2 from [KL89] tells us that f (x) and h(x)
agree in their high-order s coefficients.
So define f̃ (x) = xnf (1

x) and h̃(x) = xsh(1
x)

to be the reversals of f (x) and h(x), respectively. Then

f̃ (x) ≡ h̃(x)r mod xs . (1)

Uniquely determines h(x) up to the constant term

Can solve with O(sO(1)) field operations, as in [vzG90]

So if s is sufficiently small, we can find it in polynomial time
in the sparse size of f (x).

Page 13 of 20

Certifying low-degree h

Question

How to efficiently check whether a given h(x)
is a right composition factor of f (x)?

Let Ψh(x , y) = h(x)− h(y) and Ψf (x , y) = f (x)− f (y)

h(x) is a right composition factor of f (x)
iff Ψh(x , y) | Ψf (x , y) [FM69]

Note Ψh(x , y) does not depend on h(0)

[KK05] gives a method to efficiently check whether a low-degree
bivariate factor divides a high-degree sparse bivariate polynomial.
We can use this method to efficiently (probabilistically) check
whether Ψh(x , y) | Ψf (x , y), therefore checking
whether the h(x) we have found is correct.

Page 14 of 20

Finding h(x) of high degree

Conjecture of Schinzel [Sch87]

If any power of a polynomial is sparse, then
the polynomial itself must also be sparse.

Subject to this conjecture, we can compute h(x)
(up to its constant coefficient) in polynomial time in the size of f

and the size of h, by using a careful Newton-like iteration.
Let h̃1(x) and h̃2(x) be polynomials of degree k and l such that

h̃(x) ≡ h̃1(x) + h̃2(x)xk mod xk+l ,

where k, l ∈ Z with 1 ≤ l ≤ k and k + l ≤ s.
Then, from (1) and the binomial theorem,

f̃ (x) ≡ h̃1(x)r + r h̃1(x)r−1h̃2(x)xk mod xk+l . (2)

Page 15 of 20

Finding h(x) of high degree (2)

Through some careful manipulation, we obtain

h̃1(x)r+1 ≡ h̃1(x)f̃ (x)− r f̃ (x)h̃2(x)xk mod xk+l .

So h̃1(x)r+1 mod xk+l is sparse, and therefore from
Shinzel’s conjecture, we can compute it by repeated squaring.
Manipulating (1) again, we see that

(

1

rxk

)

(

h̃1(x)f̃ (x)− h̃1(x)r+1
)

≡ f̃ (x)h̃2(x) mod x l .

We can compute the quotient of the left-hand side divided by
f̃ (x) mod x l in polynomial time since the quotient, h̃2(x), is sparse,
and f̃ (x) has constant coefficient 1.
Thus we can compute h̃2(x) in polynomial time.

Page 16 of 20

Algorithm: Finding high-degree h(x)

1 h̃1(x)← 1; k ← 1

2 l ← min{k, s − k}

3 Perform iteration from before to find h̃2(x) of degree l

4 h̃1(x)← h̃1(x) + h̃2(x)xk ; k ← k + l

5 Repeat steps 2–4 until k = s

6 Return xs h̃1(
1
x)

Note:

h̃(x) ≡ 1 mod x since h(x) is monic; this is the starting point
for our iteration.

The last step just computes the reversal of h̃1(x) — this can
be done “for free”. So the whole algorithm runs in polynomial
time in the sparse sizes of f (x) and h(x).

Page 17 of 20

Finding g(x) when r is small

We now show how to find g(x) when h(x)− h(0) is known,
using dense interpolation.

1 Choose r + 1 distinct points θ0, . . . , θr ∈ F

2 Compute ui = h(θi)− h(0) and vi = f (θi) for i = 0, . . . , r

3 Use Lagrange interpolation to compute g(x + h(0)).

4 Use the sparsest shift algorithm of [GKL03] to find h(0),
and finally compute g(x) and h(x)

We need the ui ’s to all be distinct; the Schwartz-Zippell Lemma
guarantees this with high probability if the θi ’s are chosen
from a large enough set.

Page 18 of 20

Future Work

Using our sparsest shift interpolation algorithm to find
g(x) of high degree given h(x)

Extending the sparsest shift interpolation algorithm
to work over fields other than Z[x]

Eliminating the dependency of the algorithm for
finding high-degree h(x) on any conjectures

Removing the output-sensitivity of the runtime
(i.e. proving that h(x) and g(x) are always sparse
when f (x) is sparse) — relates to [Erd49, CD91, Abb02]

Page 19 of 20

References I

[Abb02] John Abbott. Sparse squares of polynomials.
Math. Comp., 71(237):407–413 (electronic), 2002.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynomial
interpolation.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
301–309, New York, NY, USA, 1988. ACM Press.

[CD91] Don Coppersmith and James Davenport. Polynomials whose powers are sparse.
Acta Arith., 58(1):79–87, 1991.

[CKS99] Felipe Cucker, Pascal Koiran, and Steve Smale. A polynomial time algorithm for Diophantine
equations in one variable.
J. Symbolic Comput., 27(1):21–29, 1999.

[Erd49] P. Erdös. On the number of terms of the square of a polynomial.
Nieuw Arch. Wiskunde (2), 23:63–65, 1949.

[FJ06] Jean-Charles Faugère and Antoine Joux. Cryptanalysis of 2r– schemes.
In Advances in cryptology—CRYPTO 2006, volume 4117 of Lecture Notes in Comput. Sci., pages
357–372. Springer-Verlag, Berlin, 2006.

[FM69] Michael D. Fried and R. E. MacRae. On the invariance of chains of fields.
Illinois J. Math., 13:165–171, 1969.

[GKL03] Mark Giesbrecht, Erich Kaltofen, and Wen-shin Lee. Algorithms for computing sparsest shifts of
polynomials in power, Chebyshev and Pochhammer bases.
J. Symbolic Comput., 36(3-4):401–424, 2003. International Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille).

[KK05] Erich Kaltofen and Pascal Koiran. On the complexity of factoring bivariate supersparse (lacunary)
polynomials.
In ISSAC’05, pages 208–215 (electronic). ACM, New York, 2005.

[KL89] Dexter Kozen and Susan Landau. Polynomial decomposition algorithms.
J. Symbolic Comput., 7(5):445–456, 1989.

Page 20 of 20

References II

[KL03] Erich Kaltofen and Wen-shin Lee. Early termination in sparse interpolation algorithms.
J. Symbolic Comput., 36(3-4):365–400, 2003. International Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille).

[KLZ96] Dexter Kozen, Susan Landau, and Richard Zippel. Decomposition of algebraic functions.
J. Symbolic Comput., 22(3):235–246, 1996.

[Len99] H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomials.
In Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), pages 267–276. de Gruyter, Berlin,
1999.

[LS96] Y. N. Lakshman and B. David Saunders. Sparse shifts for univariate polynomials.
Appl. Algebra Engrg. Comm. Comput., 7(5):351–364, 1996.

[Pla84] David A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems.
Theoret. Comput. Sci., 31(1-2):125–138, 1984.

[Sch87] A. Schinzel. On the number of terms of a power of a polynomial.
Acta Arith., 49(1):55–70, 1987.

[vzG90] Joachim von zur Gathen. Functional decomposition of polynomials: the tame case.
J. Symbolic Comput., 9(3):281–299, 1990.

[vzGGR03] Joachim von zur Gathen, Jaime Gutierrez, and Rosario Rubio. Multivariate polynomial decomposition.
Appl. Algebra Engrg. Comm. Comput., 14(1):11–31, 2003.

[Zip91] Richard Zippel. Rational function decomposition.
In ISSAC ’91: Proceedings of the 1991 international symposium on Symbolic and algebraic
computation, pages 1–6, New York, NY, USA, 1991. ACM Press.

