Space- and Time-Efficient Polynomial Multiplication

Daniel S. Roche

Symbolic Computation Group School of Computer Science University of Waterloo

ISSAC 2009 Seoul, Korea 30 July 2009

Univariate Polynomial Multiplication

It's important!

- Close cousin to integer multiplication
- Underlies many, many algorithms
- High-performance libraries developed and widely used
- Non-trivial algorithms useful in practice

Specifics

The Problem

Given: A ring R, an integer *n*, and $f, g \in R[x]$ with degrees less than *n* Compute: Their product $f \cdot g \in R[x]$

The Model

- Ring operations have unit cost
- Random reads from input, random reads/writes to output
- Count size of auxiliary storage

Univariate Multiplication Algorithms

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3})$ or $O(n^{1.59})$	<i>O</i> (<i>n</i>)
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n\log n\log\log n)$	<i>O</i> (<i>n</i>)

Univariate Multiplication Algorithms

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3})$ or $O(n^{1.59})$	<i>O</i> (<i>n</i>)
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n\log n\log\log n)$	<i>O</i> (<i>n</i>)

Goal: Keep time complexity the same, reduce space

Previous Work

- Savage & Swamy '79; Abrahamson '85 $\Omega(n^2)$ lower bound for time × space under restrictive models
- Maeder 1993: Bounds extra space for Karatsuba multiplication so that storage can be preallocated — about 2n extra memory cells required.
- Thomé 2002: Karatsuba multiplication for polynomials using *n* extra memory cells.

Present Contributions

- New Karatsuba-like algorithm with $O(\log n)$ space
- New FFT-based algorithm with *O*(1) space under certain conditions
- Implementations in C over $\mathbb{Z}/p\mathbb{Z}$

g0

g1

Standard Karatsuba Algorithm

Idea: Reduce one degree-2k multiplication to three of degree k.

• Originally noticed by Gauss (multiplying complex numbers), rediscovered and formalized by Karatsuba & Ofman

Input: $f, g \in R[x]$ each with degree less than 2k.

f1

Write
$$f = f_0 + f_1 x^k$$
 and $g = g_0 + g_1 x^k$.

f0

Compute:
$$a = f_0 g_0$$
, $b = f_1 g_1$, $c = (f_0 + f_1)(g_0 + g_1)$

$$f \cdot g = a + (c - a - b)x^k + bx^{2k}$$

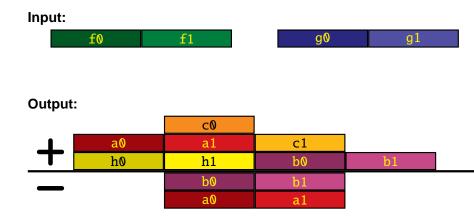
Low-Space Karatsuba Algorithm

Input:

Output:

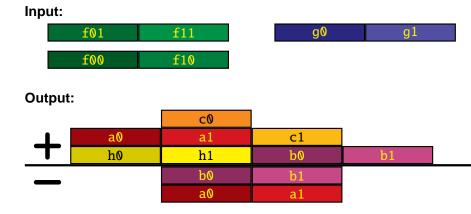
Low-Space Karatsuba Algorithm

1 The low-order coefficients of the output are initialized as h, and the product $f \cdot g$ is added to this.



Low-Space Karatsuba Algorithm

- 1 The low-order coefficients of the output are initialized as h, and the product $f \cdot g$ is added to this.
- 2 The first polynomial f is given as a sum $f^{(0)} + f^{(1)}$.



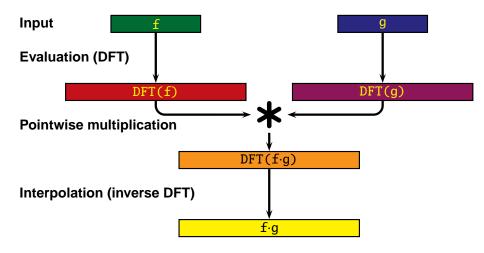
A few details

Slight modifications are needed to handle all cases:

- Initial calls without extra conditions
- Operands with odd sizes
- Operands with different sizes

Result: First algorithm with $o(n^2)$ time × space

DFT-Based Multiplication



Primitive Roots of Unity

Assumption

- $\deg f + \deg g < n = 2^k$ for some $k \in \mathbb{N}$
- The base ring R contains a 2^k -PRU ω

That is, assume "virtual roots of unity" have already been added; we will optimize from there.

Folded Polynomials

Recall that $n = 2^k$ is the size of the output.

Definition (Folded Polynomials)

$$f_i = f(\omega^{2^{i-1}}x) \quad \text{rem} \, x^{2^{k-i}} - 1$$

Theorem

$$f\left(\omega^{2^{i}(2j+1)}\right) = f_{i+1}\left(\omega^{2^{i+1}j}\right)$$

So by computing each f_i at all powers of ω^i , we get the values of f at all powers of ω .

Idea: Solve half of remaining problem at each iteration

Input

()	
(emptv)	
(emp cy)	

Idea: Solve half of remaining problem at each iteration

g

FFT-Based Multiplication without Extra Space

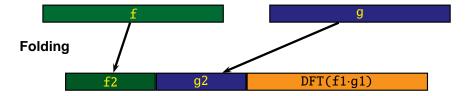
Idea: Solve half of remaining problem at each iteration

In-Place FFTs (alternate formulation)

Idea: Solve half of remaining problem at each iteration

Pointwise Multiplication

Idea: Solve half of remaining problem at each iteration



g

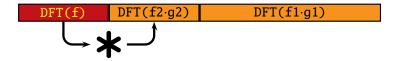
FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

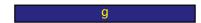
In-Place FFTs (alternate formulation)

Idea: Solve half of remaining problem at each iteration

Pointwise Multiplication



Idea: Solve half of remaining problem at each iteration



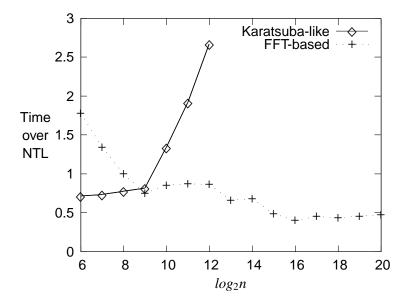
(k iterations)

	DFT(f·g)
--	----------

Idea: Solve half of remaining problem at each iteration

In-Place Reverse FFT (usual formulation)

Timing Benchmarks



Future Directions

- Efficient implementation over \mathbb{Z} (GMP)
- Similar results for Toom-Cook 3-way or k-way
- Parallelism!
- Is completely in-place (overwriting input) possible?