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Univariate Polynomial Multiplication

It’s important!

• Close cousin to integer multiplication

• Underlies many, many algorithms

• High-performance libraries developed and widely used

• Non-trivial algorithms useful in practice
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Specifics

The Problem

Given: A ring R, an integer n,
and f , g ∈ R[x] with degrees less than n

Compute: Their product f · g ∈ R[x]

The Model

• Ring operations have unit cost

• Random reads from input, random reads/writes to output

• Count size of auxiliary storage
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Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)
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Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)

Goal: Keep time complexity the same, reduce space
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Previous Work

• Savage & Swamy ’79; Abrahamson ’85
Ω(n2) lower bound for time × space under restrictive models

• Maeder 1993: Bounds extra space for Karatsuba
multiplication so that storage can be preallocated
— about 2n extra memory cells required.

• Thomé 2002: Karatsuba multiplication for polynomials
using n extra memory cells.
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Present Contributions

• New Karatsuba-like algorithm with O(log n) space

• New FFT-based algorithm with O(1) space
under certain conditions

• Implementations in C over Z/pZ
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Standard Karatsuba Algorithm

Idea: Reduce one degree-2k multiplication to three of degree k.

• Originally noticed by Gauss (multiplying complex numbers),
rediscovered and formalized by Karatsuba & Ofman

Input: f , g ∈ R[x] each with degree less than 2k.

Write f = f0 + f1xk and g = g0 + g1xk.

f0 f1 g0 g1

Compute: a = f0g0, b = f1g1, c = (f0 + f1)(g0 + g1)

f · g = a + (c − a − b)xk
+ bx2k
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Low-Space Karatsuba Algorithm

Input:

f0 f1 g0 g1

Output:

a0 a1

c0

b0 b1

c1

b0 b1

a0 a1
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Low-Space Karatsuba Algorithm

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

Input:

f0 f1 g0 g1

Output:

a0 a1

c0

h0 h1 b0 b1

c1

b0 b1

a0 a1
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Low-Space Karatsuba Algorithm

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

2 The first polynomial f is given as a sum f (0)
+ f (1).

Input:

f01 f11

f00 f10

g0 g1

Output:

a0 a1

c0

h0 h1 b0 b1

c1

b0 b1

a0 a1
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A few details

Slight modifications are needed to handle all cases:

• Initial calls without extra conditions

• Operands with odd sizes

• Operands with different sizes

Result: First algorithm with o(n2) time × space
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DFT-Based Multiplication

Input f g

DFT(f) DFT(g)

Pointwise multiplication

DFT(f·g)

f·g

Evaluation (DFT)

Interpolation (inverse DFT)
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Primitive Roots of Unity

Assumption

• deg f + deg g < n = 2k for some k ∈ N

• The base ring R contains a 2k-PRU ω

That is, assume “virtual roots of unity” have already been added;
we will optimize from there.
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Folded Polynomials

Recall that n = 2k is the size of the output.

Definition (Folded Polynomials)

fi = f (ω2i−1
x) rem x2k−i

− 1

Theorem

f
(

ω2i(2j+1)
)

= fi+1

(

ω2i+1j
)

So by computing each fi at all powers of ωi,
we get the values of f at all powers of ω.
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

Input

(empty)
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f1 g1

Folding
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f1) DFT(g1)

In-Place FFTs (alternate formulation)
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f1) DFT(f1·g1)

Pointwise Multiplication
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f2 g2 DFT(f1·g1)

Folding



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f2) DFT(g2) DFT(f1·g1)

In-Place FFTs (alternate formulation)
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f) DFT(f1·g1)DFT(f2·g2)

Pointwise Multiplication
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

· · · · · · DFT(f·g)

(k iterations)
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FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f·g

In-Place Reverse FFT (usual formulation)
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Timing Benchmarks
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Future Directions

• Efficient implementation over Z (GMP)

• Similar results for
Toom-Cook 3-way or k-way

• Parallelism!

• Is completely in-place (overwriting input) possible?
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