Adaptive Polynomial Multiplication

Daniel S. Roche

Symbolic Computation Group School of Computer Science University of Waterloo

ORCCA Joint Lab Meeting University of Western Ontario 14 March 2008

Outline

1 Background

- Polynomial Multiplication
- Adaptive Analysis

2 Ideas for Faster Multiplication

- Dense vs. Sparse
- Coefficients in Sequence
- Equal-Spaced Coefficients
- 3 Chunky Multiplication
 - Overview
 - Details
 - Implementation

4 Conclusions

How to Represent Univariate Polynomials

Let $f \in R[x]$ with degree n, s nonzero terms.

Dense Representation

Write down every coefficient. Size is O(n):

$$f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Sparse Representation

Only write down nonzero terms. Size is $O(s \log n)$:

$$f = c_1 x^{e_1} + c_2 x^{e_2} + \dots + c_s x^{e_s}$$

Polynomial Multiplication

What about multivariate?

Multivariate Polynomial Representations

- Completely dense (size grows exponentially)
- Distributed sparse (default in Maple)
- Recursive dense (the best?)
- Variations on these...
- Essentially no different algorithms for multiplication
- Univariate algorithms generalize

Dense Multiplication Algorithms

Let R be an arbitrary ring, and $f, g \in R[x]$.

Definition

M(n) is the number of operations in R to compute

 $h = f \cdot g$ with deg f, deg g < n.

- Classical: $M(n) \in O(n^2)$
- Karatsuba & Ofman (1963): $M(n) \in O(n^{\log_2 3})$
- Schönhage & Strassen (1971), Cantor & Kaltofen (1991): $M(n) \in O(n \log n \log \log n)$ — uses FFT

If deg $g < m \le n$, can multiply $f \cdot g$ with $O(\frac{n}{m}M(m))$.

Polynomial Multiplication

Assumptions on M(*n*)

- If R has a 2^k -PRU, with $2^k \ge 2n$, then $M(n) \in O(n \log n)$.
- Under "bounded coefficients model", $M(n) \in \Omega(n \log n)$. (Bürgisser & Lotz 2004)

So we (reasonably) assume $M(n) \in \Theta(n \log n)$. This will simplify the analysis. Polynomial Multiplication

Sparse Polynomial Multiplication

- Naïve: O(s²) ring ops:
 Optimal since f · g could have s² terms.
- Geobuckets (Yan 1998): Optimal bit complexity
- Heaps (Johnson 1974, Monagan & Pearce 2007): Optimal space complexity

Adaptive Sorting

List sorting is the birthplace of adaptive analysis (Melhorn 1984).

- Classical problem in computer science.
- Lower bound (comparisons) is $\Omega(n \log n)$.
- Maching upper bound algorithms (e.g. MergeSort)

Question: Can we do better on "almost" sorted lists? Answer: Yes!

Adaptive sorting interesting theoretically and useful in practice.

Chunky Multiplication

Adaptive Analysis

A rose by any other name...

Related Notions

- Output-Sensitive Algorithms
- Early Termination
- Parameterized Complexity

These terms are not foreign to computer algebra!

Examples: Sparse interpolation, Chinese remaindering

General Approach to Adaptive Altorithms

Definition

An *adaptive algorithm* is one whose complexity depends not only on the size of the input, but also on some measure of difficulty.

- Finer level of analysis
- Still require worst-case complexity not to be worse
- The goal: improvement in many "easy" cases.

Background

Ideas for Faster Multiplicatio

Chunky Multiplication

Conclusions

Our Approach

Overall Steps

- 1 Recognize structure
- 2 Change rep. to exploit structure
- 3 Multiply
- 4 Convert back
 - Step 3 cost depends on instance difficulty.
 - Steps 1, 2, 4 must be fast (linear).

Chunky Multiplication

An Obvious Adaptive Algorithm

Algorithm

- Determine whether sparse or dense multiplication will be faster
- 2 (Possibly) convert to faster representation
- 3 Multiply using known methods
- 4 (Possibly) convert back
- **Cost:** $O\left(\min\left\{\mathsf{M}(n), s^2\right\}\right)$
- Has been suggested for triangular decomposition, where intermediate expressions can become dense.

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	000000		
Coefficients in Sequence			

Example

$$f = 1 + 2x + 3x^{2} + 4x^{3} + \dots = \sum (i+1)x$$

$$g = -2 + 7x - 3x^{2} - 4x^{3} + \dots \text{ (arbitrary)}$$

$$f \cdot g =$$
 accum =

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	000000		
Coefficients in Sequence			

Example

$$f = 1 + 2x + 3x^{2} + 4x^{3} + \dots = \sum (i+1)x$$

$$g = -2 + 7x - 3x^{2} - 4x^{3} + \dots \text{ (arbitrary)}$$

$$f \cdot g = -2$$
$$accum = -2$$

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	000000		
Coefficients in Sequence			

Example

$$f = 1 + 2x + 3x^{2} + 4x^{3} + \dots = \sum (i+1)x$$

$$g = -2 + 7x - 3x^{2} - 4x^{3} + \dots \text{ (arbitrary)}$$

$$f \cdot g = -2 + 3x$$
$$accum = 5$$

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	000000		
Coefficients in Sequence			

Example

$$f = 1 + 2x + 3x^{2} + 4x^{3} + \dots = \sum (i+1)x$$

$$g = -2 + 7x - 3x^{2} - 4x^{3} + \dots \text{ (arbitrary)}$$

$$f \cdot g = -2 + 3x + 5x^2$$
$$accum = 2$$

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	000000		
Coefficients in Sequence			

Example

$$f = 1 + 2x + 3x^{2} + 4x^{3} + \dots = \sum (i+1)x$$

$$g = -2 + 7x - 3x^{2} - 4x^{3} + \dots \text{ (arbitrary)}$$

$$f \cdot g = -2 + 3x + 5x^2 + 3x^3$$
$$\operatorname{accum} = -2$$

Background

Ideas for Faster Multiplication

Chunky Multiplication

Coefficients in Sequence

Sequential Multiplication

Works for any arithmetic-geometric sequence:

$$f = \sum_{i=0}^{n} (c_1 + c_2 i + c_3 c_4^i) x^i$$

For arbitrary $g \in R[x]$, can compute $f \cdot g$ in linear time.

This is optimal!

	Ideas for Faster Multiplication	Chunky Multiplication	
Coefficients in Sequence			

Generalization

Split arbitrary $f \in R[x]$ into:

$$f = f_S + f_N,$$

where

- f_S has sequential coefficients
- f_N (the "noise") is very small

Can determine f_S by finding successive differences, quotients.

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	0000 00		
Equal-Spaced Coefficients			

Second idea for Adaptive Multiplication

$$f = 3 - 2x^3 + 7x^6 + 5x^{12} - 6x^{15}$$

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	0000000		
Equal-Spaced Coefficients			

Second idea for Adaptive Multiplication

$$f = 3 - 2x^{3} + 7x^{6} + 5x^{12} - 6x^{15}$$
$$f_{D} = 3 - 2x + 7x^{2} + 5x^{4} - 6x^{5}$$
$$f = f_{D} \circ x^{3}$$

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	0000000		
Equal-Spaced Coefficients			

Second idea for Adaptive Multiplication

Example

$$f = 3 - 2x^{3} + 7x^{6} + 5x^{12} - 6x^{15}$$

$$f_{D} = 3 - 2x + 7x^{2} + 5x^{4} - 6x^{5}$$

$$f = f_{D} \circ x^{3}$$

$$g = g_{D} \circ x^{3}$$

To multiply $f \cdot g$, multiply $f_D \cdot g_D$:

$$f \cdot g = (f_D \cdot g_D) \circ x^3$$

	Ideas for Faster Multiplication	Chunky Multiplication	
Equal-Spaced Coefficients			

$$f = 4 + 6x^2 + 9x^4 - 7x^6 - x^8 + 3x^{10} - 2x^{12}$$

$$g = 3 + 2x^3 - x^6 + 8x^9 - 5x^{12}$$

	Ideas for Faster Multiplication	Chunky Multiplication	
Equal-Spaced Coefficients			

$$f = 4 + 6x^{2} + 9x^{4} - 7x^{6} - x^{8} + 3x^{10} - 2x^{12}$$

$$f_{D} = 4 + 6x + 9x^{2} - 7x^{3} - x^{4} + 3x^{5} - 2x^{6}$$

$$f = f_{D} \circ x^{2}$$

$$g = 3 + 2x^{3} - x^{6} + 8x^{9} - 5x^{12}$$
$$g_{D} = 3 + 2x - x^{2} + 8x^{3} - 5x^{4}$$
$$g = g_{D} \circ x^{3}$$

	Ideas for Faster Multiplication	Chunky Multiplication	
Equal-Spaced Coefficients			

$$f = 4 + 6x^{2} + 9x^{4} - 7x^{6} - x^{8} + 3x^{10} - 2x^{12}$$

$$f_{0} = 4 - 7x - 2x^{2}, \quad f_{2} = 6 - x, \quad f_{4} = 9 + 3x$$

$$f = f_{0} \circ x^{6} + x^{2}(f_{2} \circ x^{6}) + x^{4}(f_{4} \circ x^{6})$$

$$g = 3 + 2x^{3} - x^{6} + 8x^{9} - 5x^{12}$$

$$g_{0} = 3 - x - 5x^{2}, \quad g_{3} = 2 + 8x$$

$$g = g_{0} \circ x^{6} + x^{3}(g_{3} \circ x^{6})$$

	Ideas for Faster Multiplication	Chunky Multiplication	
Equal-Spaced Coefficients			

Example

$$f = 4 + 6x^{2} + 9x^{4} - 7x^{6} - x^{8} + 3x^{10} - 2x^{12}$$

$$f_{0} = 4 - 7x - 2x^{2}, \quad f_{2} = 6 - x, \quad f_{4} = 9 + 3x$$

$$f = f_{0} \circ x^{6} + x^{2}(f_{2} \circ x^{6}) + x^{4}(f_{4} \circ x^{6})$$

$$g = 3 + 2x^{3} - x^{6} + 8x^{9} - 5x^{12}$$

$$g_0 = 3 - x - 5x^2, \qquad g_3 = 2 + 8x$$

$$g = g_0 \circ x^6 + x^3 (g_3 \circ x^6)$$

Computing f · g requires 6 multiplications f_i · g_j, no additions
 Note: f · g is almost totally dense.

Background	Ideas for Faster Multiplication	Chunky Multiplication	
	0000 00		
Equal-Spaced Coefficients			

Equal-Spaced Multiplication

Theorem

Given
$$f = f_D \circ x^k$$
, $g = g_D \circ x^\ell$, and deg f , deg $g < n$, can find $f \cdot g$ using

$$O\left(\frac{n}{\gcd(k,\ell)}\mathsf{M}\left(\frac{n}{\operatorname{lcm}(k,\ell)}\right)\right)$$

ring operations.

- Again, allow for noise: $f = f_D \circ x^k + f_N$
- Finding optimal k value related to max factor gcd

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

$$f = 5x^6 + 6x^7 - 4x^9 - 7x^{52} + 4x^{53} + 3x^{76} + x^{78}$$

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

$$f = 5x^{6} + 6x^{7} - 4x^{9} - 7x^{52} + 4x^{53} + 3x^{76} + x^{78}$$

$$f_{1} = 5 + 6x - 4x^{3}, \quad f_{2} = -7 + 4x, \quad f_{3} = 3 + x^{2}$$

$$f = f_{1}x^{6} + f_{2}x^{52} + f_{3}x^{76}$$

Overview

Chunky Multiplication

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

Example

$$f = 5x^{6} + 6x^{7} - 4x^{9} - 7x^{52} + 4x^{53} + 3x^{76} + x^{78}$$

$$f_{1} = 5 + 6x - 4x^{3}, \quad f_{2} = -7 + 4x, \quad f_{3} = 3 + x^{2}$$

$$f = f_{1}x^{6} + f_{2}x^{52} + f_{3}x^{76}$$

In general, write $f = f_1 x^{e_1} + f_2 x^{e_2} + \dots + f_t x^{e_t}$

- t = 1: Dense representation
- $\deg f_i = 0$: Sparse representation

Chunky Multiplication Algorithm

Multiplication is sparse on outer loop, dense on inner loop

- Exploits sparsity and uses fast dense algorithms
- Can be faster than sparse and dense algorithms:

Example

 $f, g \in \mathsf{R}[x]$ with deg f, deg g < n, and

f, g each have $\log_2 n$ dense chunks with degrees less than \sqrt{n} .

Costs (ring operations):

- **Dense:** M(n), or $\Omega(n \log n)$
- Sparse: $\Omega(n \log^2 n)$
- **Chunky**: $O(\sqrt{n} \log^3 n \log \log n)$

Limitations

Can't always be faster than both dense and sparse:

Example

 $f, g \in \mathsf{R}[x]$, degrees < n, each with \sqrt{n} nonzero terms, spaced equally apart.

- Dense, sparse multiplication cost roughly the same
- Chunky multiplication can *match* either, but not beat both.
- Must choose to beat either sparse or dense

	Chunky Multiplication	
Details		

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let
$$f = \sum f_i x^{e_i}$$
 and each deg $f_i < d_i$.
Let $g \in \mathbf{R}[x]$ be dense, deg $g < m$.

Cost of chunky multiplication $f \cdot g$:

$$O\left(m\log\prod_{d_i\leq m}(d_i+1)+(\log m)\sum_{d_i>m}d_i\right)$$

	Chunky Multiplication	
Details		

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let
$$f = \sum f_i x^{e_i}$$
 and each deg $f_i < d_i$.
Let $g \in \mathbf{R}[x]$ be dense, deg $g < m$.

Cost of chunky multiplication $f \cdot g$:

$$O\left(m\log\prod_{d_i\leq m}(d_i+1)+(\log m)\sum_{d_i>m}d_i\right)$$

■ Minimize $\prod (d_i + 1)$ to compete with dense

	Chunky Multiplication	
Details		

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let
$$f = \sum f_i x^{e_i}$$
 and each deg $f_i < d_i$.
Let $g \in \mathbf{R}[x]$ be dense, deg $g < m$.

Cost of chunky multiplication $f \cdot g$:

$$O\left(m\log\prod_{d_i\leq m}(d_i+1)+(\log m)\sum_{d_i>m}d_i\right)$$

- Minimize $\prod (d_i + 1)$ to compete with dense
- Minimize $\sum d_i$ to compete with sparse

Details

Converting from Sparse

• $\sum d_i$ minimized in sparse representation

- So introduce slack variable $\omega \ge 1$
- We guarantee $\sum d_i \leq \omega s$.

Comparing Gaps

How to decide if a gap should be collapsed? Assign "scores" based on

- Maximize *decrease* in $\prod (d_i + 1)$
- Minimize *increase* in $\sum d_i$

Details

Sparse to Chunky Conversion

- Cost $O(s \log s)$ linear in sparse input size
- Heuristic

- 1 Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- 3 While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example: $f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$

$$\begin{bmatrix} 5x^3 + 3x^4 \end{bmatrix}$$
 $\begin{bmatrix} -4x^6 \end{bmatrix}$ $\begin{bmatrix} -8x^{20} + 2x^{21} - 6x^{22} \end{bmatrix}$ $\begin{bmatrix} -4x^{24} \end{bmatrix}$ $\begin{bmatrix} -5x^{26} \end{bmatrix}$

- 1 Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example:
$$f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$$

$$\left[5x^{3} + 3x^{4}\right](36)\left[-4x^{6}\right](0)\left[-8x^{20} + 2x^{21} - 6x^{22}\right](40)\left[-4x^{24}\right](30)\left[-5x^{26}\right]$$

- Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example:
$$f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$$

$$\left[5x^{3} + 3x^{4}\right](36)\left[-4x^{6}\right](0)\left[-8x^{20} + 2x^{21} - 6x^{22} - 4x^{24}\right](30)\left[-5x^{26}\right]$$

- Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example:
$$f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$$

$$\left[5x^{3} + 3x^{4}\right](36)\left[-4x^{6}\right](0)\left[-8x^{20} + 2x^{21} - 6x^{22} - 4x^{24}\right](45)\left[-5x^{26}\right]$$

- Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example: $f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$

$$\left[5x^{3} + 3x^{4}\right](36)\left[-4x^{6}\right](0)\left[-8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}\right]$$

- Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Example:
$$f(x) = 5x^3 + 3x^4 - 4x^6 - 8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}$$

$$\left[5x^{3} + 3x^{4}\right](36)\left[-4x^{6}\right](0)\left[-8x^{20} + 2x^{21} - 6x^{22} - 4x^{24} - 5x^{26}\right]$$

- Split polynomial at every possible gap
- 2 Assign scores to gaps; put in linked heap
- **3** While $\sum d_i < \omega s$
- 4 Collapse gap with best score
- 5 Update neighboring gaps' scores

Details

Converting from Dense

- Finding min $\prod (d_i + 1)$ non-trivial
- Completely dense rep. has $\prod (d_i + 1) = n + 1$.
- We guarantee $\prod (d_i + 1) < (n + 1)^{\omega}$
- Idea: Include as many gaps as possible

When to split at a gap?

- Depends heavily on adjacent gaps
- Similar to maze search with backtracking

Details

Dense to Chunky Conversion

- Create empty stack of gaps
- **2** For each gap in f, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack
 - Each gap pushed and popped at most once
 - At most n/2 gaps
 - \therefore Complexity O(n) linear in dense rep. size

		Chunky Multiplication	
00000000	000000	000000000000	00
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\left[1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}\right]$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

 $\begin{bmatrix} 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$

- Create empty stack of gaps
- **2** For each gap in f, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

		Chunky Multiplication	
00000000	000000	00000000000	00
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- **2** For each gap in f, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

		Chunky Multiplication	
00000000	000000	000000000000	
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25}+x^{26} \end{bmatrix} \begin{bmatrix} x^{29}+x^{31}+x^{32}+x^{33}+x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

		Chunky Multiplication	
00000000	000000	000000000000	
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25}+x^{26} \end{bmatrix} \begin{bmatrix} x^{29}+x^{31}+x^{32}+x^{33}+x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- **2** For each gap in f, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

		Chunky Multiplication	
00000000	000000	000000000000	
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25}+x^{26} \end{bmatrix} \begin{bmatrix} x^{29}+x^{31}+x^{32}+x^{33}+x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

		Chunky Multiplication	
00000000	000000	000000000000	
Dense to Chunky Conversion			

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

 $\begin{bmatrix} 1 + x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} \end{bmatrix} \begin{bmatrix} x^{29} \end{bmatrix} \begin{bmatrix} x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

Background	Chunky Multiplication	
	000000000000	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

 $\begin{bmatrix} 1 + x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} \end{bmatrix} \begin{bmatrix} x^{29} \end{bmatrix} \begin{bmatrix} x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$

- Create empty stack of gaps
- **2** For each gap in f, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

Background	Chunky Multiplication	
	000000000000	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

 $\begin{bmatrix} 1 + x \end{bmatrix} \begin{bmatrix} x^{25} + x^{26} \end{bmatrix} \begin{bmatrix} x^{29} \end{bmatrix} \begin{bmatrix} x^{31} + x^{32} + x^{33} + x^{34} \end{bmatrix}$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
	000000000000	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\begin{bmatrix} 1+x \end{bmatrix} \begin{bmatrix} x^{25}+x^{26} \end{bmatrix} \begin{bmatrix} x^{29}+x^{31}+x^{32}+x^{33}+x^{34} \end{bmatrix}$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
	000000000000	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\left[1+x\right] \left[x^{25}+x^{26}+x^{29}+x^{31}+x^{32}+x^{33}+x^{34}\right]$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

	Chunky Multiplication	
	000000000000	
Dense to Chunky Conversion		

Example:
$$f = 1 + x + x^{25} + x^{26} + x^{29} + x^{31} + x^{32} + x^{33} + x^{34}$$

$$\left[1+x\right] \left[x^{25}+x^{26}+x^{29}+x^{31}+x^{32}+x^{33}+x^{34}\right]$$

- Create empty stack of gaps
- 2 For each gap in *f*, moving left to right
- Pop off all gaps that don't improve $\prod (d_i + 1)$ if polynomial ended here
- 4 Push current gap onto stack
- 5 Split at all gaps remaining on stack

Choice of Ring

Assumptions

- **Ring elts.** have constant storage: $R = \mathbb{Z}_p$
- **Ring ops. have unit cost:** $p < 2^{30}$

■
$$M(n) \in O(n \log n)$$
: 2²⁶ | (p - 1)

Implementation Notes

Implemented: Chunky multiplication from dense input using Victor Shoup's NTL

Additions to NTL

- "Lopsided multiplication" to achieve $O(\frac{n}{m}M(m))$
- Sparse multiplication using heaps (ala Monagan & Pearce)
- In-place multiplication to avoid copying

Conversion Algorithms

- 1 "Standard" (using "gap stack") with slack var. ω
- 2 "Naïve" split at every gap

Timing Results

Test Parameters

- Degree fixed at 10 000
- 1 to 300 "chunks" in each polynomial
- Degree of each chunk < 10

Algorithms compared:

- Standard NTL Multiplication
- "Standard" chunky with $\omega = 1, 2, 4$
- "Naïve" chunky

Summary

- Adaptive algorithms perform better in easy cases, but never (asymptotically) worse
- Three ideas for adaptive multiplication:
 - Coefficients in sequence
 - Equal-spaced coefficients
 - Chunky coefficients
- Theory does inform practice, to some extent

Future Work

- Compare chunky multiplication to sparse
- Find better gradient between dense/sparse chunky conversion
- Investigate structure of polynomials in practice
- Develop theory further: difficulty measures, relationships
- Combine ideas for adaptive multiplication