
Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Adaptive Polynomial Multiplication

Daniel S. Roche

Symbolic Computation Group
School of Computer Science

University of Waterloo

ORCCA Joint Lab Meeting
University of Western Ontario

14 March 2008

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Outline

1 Background
Polynomial Multiplication
Adaptive Analysis

2 Ideas for Faster Multiplication
Dense vs. Sparse
Coefficients in Sequence
Equal-Spaced Coefficients

3 Chunky Multiplication
Overview
Details
Implementation

4 Conclusions

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Polynomial Multiplication

How to Represent Univariate Polynomials

Let f ∈ R[x] with degree n, s nonzero terms.

Dense Representation

Write down every coefficient. Size is O(n):

f = a0 + a1x + a2x2
+ · · · + anxn

Sparse Representation

Only write down nonzero terms. Size is O(s log n):

f = c1xe1 + c2xe2 + · · · + csx
es

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Polynomial Multiplication

What about multivariate?

Multivariate Polynomial Representations

Completely dense (size grows exponentially)

Distributed sparse (default in Maple)

Recursive dense (the best?)

Variations on these. . .

Essentially no different algorithms for multiplication

Univariate algorithms generalize

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Polynomial Multiplication

Dense Multiplication Algorithms

Let R be an arbitrary ring, and f , g ∈ R[x].

Definition

M(n) is the number of operations in R to compute
h = f · g with deg f , deg g < n.

Classical: M(n) ∈ O(n2)

Karatsuba & Ofman (1963): M(n) ∈ O(nlog2 3)

Schönhage & Strassen (1971), Cantor & Kaltofen (1991):
M(n) ∈ O(n log n loglogn) — uses FFT

If deg g < m ≤ n, can multiply f · g with O(n
mM(m)).

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Polynomial Multiplication

Assumptions on M(n)

If R has a 2k-PRU, with 2k ≥ 2n, then
M(n) ∈ O(n log n).

Under “bounded coefficients model”,
M(n) ∈ Ω(n log n).
(Bürgisser & Lotz 2004)

So we (reasonably) assume M(n) ∈ Θ(n log n).
This will simplify the analysis.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Polynomial Multiplication

Sparse Polynomial Multiplication

Naı̈ve: O(s2) ring ops:
Optimal since f · g could have s2 terms.

Geobuckets (Yan 1998): Optimal bit complexity

Heaps (Johnson 1974, Monagan & Pearce 2007):
Optimal space complexity

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Adaptive Analysis

Adaptive Sorting

List sorting is the birthplace of adaptive analysis (Melhorn 1984).

Classical problem in computer science.

Lower bound (comparisons) is Ω(n log n).

Maching upper bound algorithms (e.g. MergeSort)

Question: Can we do better on “almost” sorted lists?

Answer: Yes!

Adaptive sorting interesting theoretically and useful in practice.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Adaptive Analysis

A rose by any other name. . .

Related Notions

Output-Sensitive Algorithms

Early Termination

Parameterized Complexity

These terms are not foreign to computer algebra!

Examples: Sparse interpolation, Chinese remaindering

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Adaptive Analysis

General Approach to Adaptive Altorithms

Definition

An adaptive algorithm is one whose complexity
depends not only on the size of the input,
but also on some measure of difficulty.

Finer level of analysis

Still require worst-case complexity not to be worse

The goal: improvement in many “easy” cases.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Adaptive Analysis

Our Approach

Overall Steps

1 Recognize structure

2 Change rep. to
exploit structure

3 Multiply

4 Convert back

Step 3 cost depends
on instance difficulty.

Steps 1, 2, 4 must be
fast (linear).

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense vs. Sparse

An Obvious Adaptive Algorithm

Algorithm

1 Determine whether sparse or dense multiplication
will be faster

2 (Possibly) convert to faster representation

3 Multiply using known methods

4 (Possibly) convert back

Cost: O
(

min
{

M(n), s2
})

Has been suggested for triangular decomposition,
where intermediate expressions can become dense.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Coefficients

Example

f = 1 + 2x + 3x2
+ 4x3

+ · · · =

∑

(i + 1)xi

g = − 2 + 7x − 3x2 − 4x3
+ · · · (arbitrary)

Can compute f · g with an accumulator:

f · g =
accum =

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Coefficients

Example

f = 1 + 2x + 3x2
+ 4x3

+ · · · =

∑

(i + 1)xi

g = − 2 + 7x − 3x2 − 4x3
+ · · · (arbitrary)

Can compute f · g with an accumulator:

f · g = − 2

accum = − 2

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Coefficients

Example

f = 1 + 2x + 3x2
+ 4x3

+ · · · =

∑

(i + 1)xi

g = − 2 + 7x − 3x2 − 4x3
+ · · · (arbitrary)

Can compute f · g with an accumulator:

f · g = − 2 + 3x

accum = 5

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Coefficients

Example

f = 1 + 2x + 3x2
+ 4x3

+ · · · =

∑

(i + 1)xi

g = − 2 + 7x − 3x2 − 4x3
+ · · · (arbitrary)

Can compute f · g with an accumulator:

f · g = − 2 + 3x + 5x2

accum = 2

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Coefficients

Example

f = 1 + 2x + 3x2
+ 4x3

+ · · · =

∑

(i + 1)xi

g = − 2 + 7x − 3x2 − 4x3
+ · · · (arbitrary)

Can compute f · g with an accumulator:

f · g = − 2 + 3x + 5x2
+ 3x3

accum = − 2

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Sequential Multiplication

Works for any arithmetic-geometric sequence:

f =
n

∑

i=0

(c1 + c2i + c3ci
4)xi

For arbitrary g ∈ R[x],
can compute f · g in linear time.

This is optimal!

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Coefficients in Sequence

Generalization

Split arbitrary f ∈ R[x] into:

f = fS + fN ,

where

fS has sequential coefficients

fN (the “noise”) is very small

Can determine fS by finding successive differences, quotients.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Second idea for Adaptive Multiplication

Example

f = 3 − 2x3
+ 7x6

+ 5x12 − 6x15

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Second idea for Adaptive Multiplication

Example

f = 3 − 2x3
+ 7x6

+ 5x12 − 6x15

fD = 3 − 2x + 7x2
+ 5x4 − 6x5

f = fD ◦ x3

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Second idea for Adaptive Multiplication

Example

f = 3 − 2x3
+ 7x6

+ 5x12 − 6x15

fD = 3 − 2x + 7x2
+ 5x4 − 6x5

f = fD ◦ x3

g = gD ◦ x3

To multiply f · g, multiply fD · gD:

f · g = (fD · gD) ◦ x3

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Different Spacing

Example

f = 4 + 6x2
+ 9x4 − 7x6 − x8

+ 3x10 − 2x12

g = 3 + 2x3 − x6
+ 8x9 − 5x12

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Different Spacing

Example

f = 4 + 6x2
+ 9x4 − 7x6 − x8

+ 3x10 − 2x12

fD = 4 + 6x + 9x2 − 7x3 − x4
+ 3x5 − 2x6

f = fD ◦ x2

g = 3 + 2x3 − x6
+ 8x9 − 5x12

gD = 3 + 2x − x2
+ 8x3 − 5x4

g = gD ◦ x3

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Different Spacing

Example

f = 4 + 6x2
+ 9x4 − 7x6 − x8

+ 3x10 − 2x12

f0 = 4 − 7x − 2x2, f2 = 6 − x, f4 = 9 + 3x

f = f0 ◦ x6
+ x2(f2 ◦ x6) + x4(f4 ◦ x6)

g = 3 + 2x3 − x6
+ 8x9 − 5x12

g0 = 3 − x − 5x2, g3 = 2 + 8x

g = g0 ◦ x6
+ x3(g3 ◦ x6)

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Different Spacing

Example

f = 4 + 6x2
+ 9x4 − 7x6 − x8

+ 3x10 − 2x12

f0 = 4 − 7x − 2x2, f2 = 6 − x, f4 = 9 + 3x

f = f0 ◦ x6
+ x2(f2 ◦ x6) + x4(f4 ◦ x6)

g = 3 + 2x3 − x6
+ 8x9 − 5x12

g0 = 3 − x − 5x2, g3 = 2 + 8x

g = g0 ◦ x6
+ x3(g3 ◦ x6)

Computing f · g requires 6 multiplications fi · gj, no additions

Note: f · g is almost totally dense.

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Equal-Spaced Coefficients

Equal-Spaced Multiplication

Theorem

Given f = fD ◦ xk, g = gD ◦ xℓ, and deg f , deg g < n,
can find f · g using

O

(

n
gcd(k, ℓ)

M

(

n
lcm(k, ℓ)

))

ring operations.

Again, allow for noise: f = fD ◦ xk
+ fN

Finding optimal k value related to max factor gcd

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Overview

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

Example

f = 5x6
+ 6x7 − 4x9 − 7x52

+ 4x53
+ 3x76

+ x78

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Overview

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

Example

f = 5x6
+ 6x7 − 4x9 − 7x52

+ 4x53
+ 3x76

+ x78

f1 = 5 + 6x − 4x3, f2 = −7 + 4x, f3 = 3 + x2

f = f1x6
+ f2x52

+ f3x76

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Overview

Simple Marriage of Dense and Sparse

Idea: Sparse polynomials with dense polynomial coefficients.

Example

f = 5x6
+ 6x7 − 4x9 − 7x52

+ 4x53
+ 3x76

+ x78

f1 = 5 + 6x − 4x3, f2 = −7 + 4x, f3 = 3 + x2

f = f1x6
+ f2x52

+ f3x76

In general, write f = f1xe1 + f2xe2 + · · · + ftxet

t = 1: Dense representation

deg fi = 0: Sparse representation

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Overview

Chunky Multiplication Algorithm

Multiplication is sparse on outer loop, dense on inner loop

Exploits sparsity and uses fast dense algorithms

Can be faster than sparse and dense algorithms:

Example

f , g ∈ R[x] with deg f , deg g < n, and
f , g each have log2 n dense chunks with degrees less than

√
n.

Costs (ring operations):

Dense: M(n), or Ω(n log n)

Sparse: Ω(n log2 n)

Chunky: O(
√

n log3 n loglogn)

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Overview

Limitations

Can’t always be faster than both dense and sparse:

Example

f , g ∈ R[x], degrees < n, each with√
n nonzero terms, spaced equally apart.

Dense, sparse multiplication cost roughly the same

Chunky multiplication can match either,
but not beat both.

Must choose to beat either sparse or dense

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let f =
∑

fixei and each deg fi < di.
Let g ∈ R[x] be dense, deg g < m.

Cost of chunky multiplication f · g:

O

m log
∏

di≤m

(di + 1) + (log m)
∑

di>m

di

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let f =
∑

fixei and each deg fi < di.
Let g ∈ R[x] be dense, deg g < m.

Cost of chunky multiplication f · g:

O

m log
∏

di≤m

(di + 1) + (log m)
∑

di>m

di

Minimize
∏

(di + 1) to compete with dense

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Cost Analysis

Cost of multiplying f times one chunk of g:

Theorem

Let f =
∑

fixei and each deg fi < di.
Let g ∈ R[x] be dense, deg g < m.

Cost of chunky multiplication f · g:

O

m log
∏

di≤m

(di + 1) + (log m)
∑

di>m

di

Minimize
∏

(di + 1) to compete with dense

Minimize
∑

di to compete with sparse

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Converting from Sparse

∑

di minimized in sparse representation

So introduce slack variable ω ≥ 1

We guarantee
∑

di ≤ ωs.

Comparing Gaps

How to decide if a gap should be collapsed?
Assign “scores” based on

Maximize decrease in
∏

(di + 1)

Minimize increase in
∑

di

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Cost O(s log s) — linear in sparse input size

Heuristic

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

] [

−4x6
] [

−8x20
+ 2x21 − 6x22

] [

−4x24
] [

−5x26
]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

]

(36)
[

−4x6
]

(0)
[

−8x20
+ 2x21 − 6x22

]

(40)
[

−4x24
]

(30)
[

−5x26
]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

]

(36)
[

−4x6
]

(0)
[

− 8x20
+ 2x21 − 6x22 − 4x24

]

(30)
[

−5x26
]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

]

(36)
[

−4x6
]

(0)
[

− 8x20
+ 2x21 − 6x22 − 4x24

]

(45)
[

−5x26
]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

]

(36)
[

−4x6
]

(0)
[

− 8x20
+ 2x21 − 6x22 − 4x24 − 5x26

]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Sparse to Chunky Conversion

Example: f (x) = 5x3
+ 3x4 − 4x6 − 8x20

+ 2x21 − 6x22 − 4x24 − 5x26

[

5x3
+ 3x4

]

(36)
[

−4x6
]

(0)
[

− 8x20
+ 2x21 − 6x22 − 4x24 − 5x26

]

Algorithm

1 Split polynomial at every possible gap

2 Assign scores to gaps; put in linked heap

3 While
∑

di < ωs

4 Collapse gap with best score

5 Update neighboring gaps’ scores

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Converting from Dense

Finding min
∏

(di + 1) non-trivial

Completely dense rep. has
∏

(di + 1) = n + 1.

We guarantee
∏

(di + 1) < (n + 1)ω

Idea: Include as many gaps as possible

When to split at a gap?

Depends heavily on adjacent gaps

Similar to maze search with backtracking

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Details

Dense to Chunky Conversion

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Each gap pushed and popped at most once

At most n/2 gaps

∴ Complexity O(n) — linear in dense rep. size

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

N N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
+ x31

+ x32
+ x33

+ x34
]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
+ x31

+ x32
+ x33

+ x34
]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
+ x31

+ x32
+ x33

+ x34
]

N N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
] [

x31
+ x32

+ x33
+ x34

]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
] [

x31
+ x32

+ x33
+ x34

]

N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
] [

x31
+ x32

+ x33
+ x34

]

N N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

] [

x29
+ x31

+ x32
+ x33

+ x34
]

N N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

N N

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Dense to Chunky Conversion

Example: f = 1 + x + x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34

[

1 + x
] [

x25
+ x26

+ x29
+ x31

+ x32
+ x33

+ x34
]

Algorithm

1 Create empty stack of gaps

2 For each gap in f , moving left to right

3 Pop off all gaps that don’t improve
∏

(di + 1)
if polynomial ended here

4 Push current gap onto stack

5 Split at all gaps remaining on stack

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Implementation

Choice of Ring

Assumptions

Ring elts. have constant storage: R = Zp

Ring ops. have unit cost: p < 230

M(n) ∈ O(n log n): 226 | (p − 1)

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Implementation

Implementation Notes

Implemented: Chunky multiplication from dense input
using Victor Shoup’s NTL

Additions to NTL

“Lopsided multiplication” to achieve O(n
mM(m))

Sparse multiplication using heaps (ala Monagan & Pearce)

In-place multiplication to avoid copying

Conversion Algorithms

1 “Standard” (using “gap stack”) with slack var. ω

2 “Naı̈ve” — split at every gap

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Implementation

Timing Results

Test Parameters

Degree fixed at 10 000

1 to 300 “chunks” in each polynomial

Degree of each chunk < 10

Algorithms compared:

Standard NTL Multiplication

“Standard” chunky with ω = 1, 2, 4

“Naı̈ve” chunky

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Implementation

NTL
Omega=1
Omega=2
Omega=4
Naive Conversion

0

0.5

1

1.5

2
T

im
e

(s
ec

on
ds

)

50 100 150 200 250 300
Number of Chunks

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Summary

Adaptive algorithms perform better in easy cases,
but never (asymptotically) worse
Three ideas for adaptive multiplication:

Coefficients in sequence
Equal-spaced coefficients
Chunky coefficients

Theory does inform practice, to some extent

Background Ideas for Faster Multiplication Chunky Multiplication Conclusions

Future Work

Compare chunky multiplication to sparse

Find better gradient between dense/sparse chunky conversion

Investigate structure of polynomials in practice

Develop theory further: difficulty measures, relationships

Combine ideas for adaptive multiplication

	Background
	Polynomial Multiplication
	Adaptive Analysis

	Ideas for Faster Multiplication
	Dense vs. Sparse
	Coefficients in Sequence
	Equal-Spaced Coefficients

	Chunky Multiplication
	Overview
	Details
	
	Implementation

	Conclusions
	

