Output-sensitive algorithms for sumset and sparse polynomial multiplication

Andrew Arnold
Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Daniel S. Roche

Computer Science Department
United States Naval Academy
Annapolis, Maryland, USA

ISSAC 2015
Bath, UK
July 8, 2014

Our Result

We can multiply any polynomial (sparse or dense) in linear time in the size of the input.*
*This statement is false.

Our Result

We can multiply any polynomial (sparse or dense) in linear time in the sizes of the input and output.*

*This statement is false.

Our Result

We can multiply any polynomial (sparse or dense) in softly-linear time in the sizes of the input and output.*

Note: $O^{\sim}(\phi)$ means $O\left(\phi \log ^{O(1)} \phi\right)$.
*This statement is false.

Our Result

We can multiply any polynomial (sparse or dense) in softly-linear time
in the "structural" sizes of the input and output.
Note: $O^{\sigma}(\phi)$ means $O\left(\phi \log ^{O(1)} \phi\right)$.

Dense multiplication

How to multiply?

$$
\begin{gathered}
65 x^{3}+20 x^{2}+26 x+16 \\
\times \\
60 x^{2}+78 x-48
\end{gathered}
$$

Dense multiplication

How to multiply?

- Direct "school" method. Quadratic complexity.

Dense multiplication

How to multiply?

$$
\begin{array}{cc}
65 x^{3}+20 x^{2}+26 x+16 \longrightarrow & 65002000260016 \\
\times \\
60 x^{2}+78 x-48 \longrightarrow & 6000779952 \\
= & = \\
3900 x^{5}+6270 x^{4}+2028 x^{2}-768 \longleftarrow & 390062700000202799999232
\end{array}
$$

- Direct "school" method. Quadratic complexity.
- Indirect method, using FFT. Softly-linear complexity.

Sparse Multiplication

How to multiply?

$$
\begin{gathered}
65 x^{31} y^{36}+20 x^{13} y^{49}+26 x^{38} y^{12}+16 x^{20} y^{25} \\
\times \\
60 x^{16} y^{43}+78 x^{41} y^{6}-48 x^{23} y^{19}
\end{gathered}
$$

Sparse Multiplication

How to multiply?

- Direct "school" method. Quadratic complexity

Sparse Multiplication

How to multiply?

- Direct "school" method. Quadratic complexity
- Geobuckets (Yan '98)

Sparse Multiplication

How to multiply?

- Direct "school" method. Quadratic complexity
- Geobuckets (Yan '98)
- Heaps (Johnson '74, Monagan \& Pearce '07...)

Output-Sensitive Sparse Multiplication

Quadratic-time already defeated in many cases:

- Recursive dense
- Chunky, equal spaced (R. '11)
- Blockwise dense (van der Hoeven \& Lecerf '12)
- Homogeneous dense (Gastineau \& Laskar '13)
- Support on a lattice (van der Hoeven, Lebreton, Schost '13)
- Support is given (van der Hoeven \& Lecerf '13)

What about sparse intepolation?

Idea: Evaluate at $T \gg \#(f g)$ points, multiply, interpolate the product

What about sparse intepolation?

Idea: Evaluate at $T \gg \#(f g)$ points, multiply, interpolate the product

"Big prime" algorithms

Computation is performed modulo $p, p \gg \operatorname{deg}(f g)$.
But one evaluation needs $O^{\sim}(T \log \operatorname{deg}(f g))$ ops modulo p; hence at least $O^{\sim}\left(T \log ^{2} \operatorname{deg}(f g)\right)$ bit complexity

What about sparse intepolation?

Idea: Evaluate at $T \gg \#(f g)$ points, multiply, interpolate the product

"Big prime" algorithms

Computation is performed modulo $p, p \gg \operatorname{deg}(f g)$.
But one evaluation needs $O^{\sim}(T \log \operatorname{deg}(f g))$ ops modulo p; hence at least $O^{\sim}\left(T \log ^{2} \operatorname{deg}(f g)\right)$ bit complexity

"Small primes" algorithms

Computations performed modulo small primes p.
But all algorithms still need $O^{\sim}\left(T \log ^{2} \operatorname{deg}(f g)\right)$ operations.

Observe: The trouble is in the degree!

Two kinds of sparsity

Consider the following sparse addition problem:

Two kinds of sparsity

Consider the following sparse addition problem:

- Structural sparsity is 7.

Two kinds of sparsity

Consider the following sparse addition problem:

- Structural sparsity is 7.
- Arithmetic sparsity is 5 .

What to notice

2 Building Blocks

- Dense polynomial arithmetic
- Sparse polynomial interpolation

What to notice

2 Building Blocks

- Dense polynomial arithmetic
- Sparse polynomial interpolation

2 Techniques

- Multiple reduction and relaxation
- Coefficient ratios without derivatives

What to notice

2 Building Blocks

- Dense polynomial arithmetic
- Sparse polynomial interpolation

2 Techniques

- Multiple reduction and relaxation
- Coefficient ratios without derivatives

2 Useful Subroutines

- Computing sumset
- Sparse interpolation with known support

Running Example

The Problem

$$
\begin{aligned}
& f=65 x^{31} y^{36}+20 x^{13} y^{49}+26 x^{38} y^{12}+16 x^{20} y^{25} \\
& g=60 x^{16} y^{43}+78 x^{41} y^{6}-48 x^{23} y^{19}
\end{aligned}
$$

What is the product $h=f g$?

Running Example

The Problem

$f=65 x^{31} y^{36}+20 x^{13} y^{49}+26 x^{38} y^{12}+16 x^{20} y^{25}$
$g=60 x^{16} y^{43}+78 x^{41} y^{6}-48 x^{23} y^{19}$
What is the product $h=f g$?

Overview of approach

1 Estimate structural sparsity
2 Compute structural support
3 Compute arithmetic support (i.e., the actual exponents)
4 Compute the coefficients

Step 0: Substitutions

Given

$$
\begin{aligned}
& f=65 x^{31} y^{36}+20 x^{13} y^{49}+26 x^{38} y^{12}+16 x^{20} y^{25} \\
& g=60 x^{16} y^{43}+78 x^{41} y^{6}-48 x^{23} y^{19}
\end{aligned}
$$

Kronecker Substitution

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641}
\end{aligned}
$$

Note: h completely determined from $f_{K} g_{K}$.

Step 0: Substitutions

Given

$$
\begin{aligned}
& f=65 x^{31} y^{36}+20 x^{13} y^{49}+26 x^{38} y^{12}+16 x^{20} y^{25} \\
& g=60 x^{16} y^{43}+78 x^{41} y^{6}-48 x^{23} y^{19}
\end{aligned}
$$

Kronecker Substitution

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641}
\end{aligned}
$$

Note: h completely determined from $f_{K} g_{K}$.

Coefficient removal

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641}
\end{aligned}
$$

Note: structural support of h determined from $f_{S} g_{S}$.

Step 1: Estimate structural sparsity

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641}
\end{aligned}
$$

How sparse is the product $h_{S}=f_{S} \cdot g_{S}$?

1 Choose primes $p=211, p^{\prime}=5$
2 Compute $\left(\left(f_{S} \cdot g_{S}\right)^{\bmod p}\right)^{\bmod p^{\prime}}$
$=2 z^{4}+3 z^{3}+3 z^{2}+2 z+2$
3 Less than half-dense? No

Step 1: Estimate structural sparsity

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641}
\end{aligned}
$$

How sparse is the product $h_{S}=f_{S} \cdot g_{S}$?

1 Choose primes $p=211, p^{\prime}=11$
2 Compute $\left(\left(f_{S} \cdot g_{S}\right)^{\bmod p}\right)^{\bmod p^{\prime}}$
$=3 z^{9}+2 z^{8}+z^{7}+2 z^{4}+z^{3}+3 z^{2}$
3 Less than half-dense? No

Step 1: Estimate structural sparsity

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641}
\end{aligned}
$$

How sparse is the product $h_{S}=f_{S} \cdot g_{S}$?

1 Choose primes $p=211, p^{\prime}=17$
2 Compute $\left(\left(f_{S} \cdot g_{S}\right)^{\bmod p}\right)^{\bmod p^{\prime}}$
$=z^{16}+z^{7}+z^{6}+2 z^{4}+3 z^{3}+z^{2}+z+2$
3 Less than half-dense? Yes Means structural sparsity is close to 8 .

First technique: Multiple Reduction and Relaxation

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& f_{S}^{\bmod 211}=z^{199}+z^{183}+z^{60}+z^{44} \\
& \left(f_{S}^{\bmod 211}\right)^{\bmod 17}=z^{13}+z^{12}+z^{10}+z^{9}
\end{aligned}
$$

What's going on?

- First reduce exponents modulo p
- Now treat that as an ordinary polynomial
- Then reduce further!
- Each reduction introduces a factor-2 in the error estimation.

First building block

How to compute $\left(\left(f_{S} \cdot g_{S}\right)^{\bmod p}\right)^{\bmod p^{\prime}}$?

- This polynomial never gets very sparse
- Its degree is linear in the actual structural sparsity

First building block

How to compute $\left(\left(f_{S} \cdot g_{S}\right)^{\bmod p}\right)^{\bmod p^{\prime}}$?

- This polynomial never gets very sparse
- Its degree is linear in the actual structural sparsity
- So we can use dense polynomial arithmetic!

Papers: (Karatsuba '58), (Toom \& Cook '63), (Schönhage \& Strassen '71), (Cantor \& Kaltofen '91), (Fürer '07), (DKSS '08), ...
Software: GMP, NTL, FLINT, Singular, Maple,...

Step 2: Compute structural support

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641} \\
& \#\left(f_{S} \cdot g_{S}\right) \approx 8
\end{aligned}
$$

What are the exponents of $h_{S}=f_{S} \cdot g_{S}$?

- Use the same prime $p=211$ as before.
- Compute $h_{1}=\left(f_{S}^{\bmod p} \cdot g_{S}^{\bmod p}\right)^{\bmod p}$

$$
=2 z^{207}+z^{191}+z^{156}+z^{140}+2 z^{84}+3 z^{68}+z^{52}+z^{12}
$$

Step 2: Compute structural support

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641} \\
& \#\left(f_{S} \cdot g_{S}\right) \approx 8
\end{aligned}
$$

What are the exponents of $h_{S}=f_{S} \cdot g_{S}$?

- Use the same prime $p=211$ as before.
- Set $\ell \gg \operatorname{deg}(h)=16000$
- Compute $f_{2}=\sum(e \ell+1) z^{e \bmod p}$ $=(4913 \cdot 16000+1) z^{4913} \bmod 211+(3631 \cdot 16000+1) z^{3631 \bmod 211}+\cdots$ $=40320001 z^{199}+19808001 z^{183}+78608001 z^{60}+58096001 z^{44}$
- Compute g_{2} similarly.
- Compute $h_{2}=\left(f_{2} \cdot g_{2}\right)^{\bmod p} \bmod \ell^{2}$

Step 2: Compute structural support

Given

$$
\begin{aligned}
& f_{S}=z^{4913}+z^{3631}+z^{2520}+z^{1238} \\
& g_{S}=z^{4316}+z^{1923}+z^{641} \\
& \#\left(f_{S} \cdot g_{S}\right) \approx 8
\end{aligned}
$$

What are the exponents of $h_{S}=f_{S} \cdot g_{S}$?

- $p=211, \quad, \ell=16000$
- $h 1=2 z^{207}+z^{191}+z^{156}+z^{140}+2 z^{84}+3 z^{68}+z^{52}+z^{12}$
- $h 2=101152002 z^{207}+\cdots+68352001 z^{52}+\cdots$
- Take coefficient ratios: $\frac{\frac{c_{2}}{c_{1}}-1}{\ell}$
- Structural support: 1879, 3161, 4272, 4443, 5554, 6836, 7947, 9229

Did you notice the first technique again?

Did you notice the first technique again?

$$
\left(f_{2} \cdot g_{2}\right)^{\bmod p} \bmod \ell^{2}
$$

Multiple levels of reduction/relaxation here!

Second technique: Coefficient ratios

The polynomials f_{2}, g_{2}, h_{2} have their exponents encoded in the coefficients.

The encoding is additive modulo ℓ^{2} :
$(a \ell+1)(b \ell+1) \bmod \ell^{2}=(a+b) \ell+1$
Allows recovering the actual exponents
from the coefficients of the degree-reduced product.

Second building block

How to compute $h_{2}=f_{2} \cdot g_{2}$?

- This polynomial is kind of sparse.
- It has huge coefficients!

Second building block

How to compute $h_{2}=f_{2} \cdot g_{2}$?

- This polynomial is kind of sparse.
- It has huge coefficients!
- We can use sparse polynomial interpolation!
- Requirement: Linear-time in the sparsity bound, poly-logarithmic in the degree.

Papers: (Prony '95), (Blahut '79), (Ben-Or \& Tiwari '88), (Kaltofen '10), (Kaltofen \& Lee '03), (A., Giesbrecht, Roche '14), ...
Software: Mathemagix, Maple (maybe), ???

Step 3: Trim down to the arithmetic support

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right) \subseteq S= \\
& \{1879,3161,4272,4443,5554,6836,7947,9229\}
\end{aligned}
$$

What are the actual exponents of $f_{K} \cdot g_{K}$?

1 Choose $p=23, \quad q=47 \quad$ (note $p \mid(q-1)$)
2 Compute $S \bmod p=\{16,10,17,4,11,5,12,6\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$ $=41 z^{17}+7 z^{16}+46 z^{12}+25 z^{6}+31 z^{4}$

Step 3: Trim down to the arithmetic support

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right) \subseteq S= \\
& \{\mathbf{1 8 7 9}, 3161, \mathbf{4 2 7 2}, \mathbf{4 4 4 3}, 5554,6836, \mathbf{7 9 4 7}, \mathbf{9 2 2 9}\}
\end{aligned}
$$

What are the actual exponents of $f_{K} \cdot g_{K}$?

1 Choose $p=23, \quad q=47 \quad$ (note $p \mid(q-1)$)
2 Compute $S \bmod p=\{\mathbf{1 6}, 10,17,4,11,5,12,6\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$ $=41 z^{17}+7 z^{16}+46 z^{12}+25 z^{6}+31 z^{4}$
4 Identify support from nonzero terms
(Of course you saw the first technique again.)

$$
\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q
$$

Twist on second building block

How to compute $\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$?

- This polynomial is kind of sparse.
- An advantage: this time we know the support!

Twist on second building block

How to compute $\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$?

- This polynomial is kind of sparse.
- An advantage: this time we know the support!
- Use the coefficient-finding step of sparse interpolation!
- Because $p \mid(q-1)$, we can evaluate at p th roots of unity and solve a transposed Vandermonde system.

Papers: (Kaltofen \& Lakshman '89), (van der Hoeven \& Lecerf '13)

Step 4: Compute the coefficients

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right)=S^{\prime}=\{1879,4272,4443,7947,9229\}
\end{aligned}
$$

What are the coefficients of $f_{K} \cdot g_{K}$?

1 Choose $p=11, q=23$ (note $p \mid(q-1)$)
2 Compute $S^{\prime} \bmod p=\{9,4,10,5,0\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$
$=14 z^{10}+4 z^{9}+13 z^{5}+10 z^{4}+4$
4 Group like terms for Chinese Remaindering

Step 4: Compute the coefficients

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right)=S^{\prime}=\{1879,4272,4443,7947,9229\}
\end{aligned}
$$

What are the coefficients of $f_{K} \cdot g_{K}$?

1 Choose $p=11, q=67 \quad$ (note $p \mid(q-1)$)
2 Compute $S^{\prime} \bmod p=\{9,4,10,5,0\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$
$=36 z^{10}+18 z^{9}+14 z^{5}+45 z^{4}+61$
4 Group like terms for Chinese Remaindering

Step 4: Compute the coefficients

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right)=S^{\prime}=\{1879,4272,4443,7947,9229\}
\end{aligned}
$$

What are the coefficients of $f_{K} \cdot g_{K}$?

1 Choose $p=11, q=89 \quad$ (note $p \mid(q-1)$)
2 Compute $S^{\prime} \bmod p=\{9,4,10,5,0\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$

$$
=33 z^{10}+70 z^{9}+73 z^{5}+86 z^{4}+43
$$

4 Group like terms for Chinese Remaindering

Step 4: Compute the coefficients

Given

$$
\begin{aligned}
& f_{K}=f\left(z, z^{100}\right)=20 z^{4913}+65 z^{3631}+16 z^{2520}+26 z^{1238} \\
& g_{K}=g\left(z, z^{100}\right)=60 z^{4316}-48 z^{1923}+78 z^{641} \\
& \operatorname{supp}\left(f_{K} \cdot g_{K}\right)=S^{\prime}=\{1879,4272,4443,7947,9229\}
\end{aligned}
$$

What are the coefficients of $f_{K} \cdot g_{K}$?

1 Choose $p=11, q=23,67,89$
2 Compute $S^{\prime} \bmod p=\{9,4,10,5,0\}$
3 Compute $h_{p, q}=\left(f_{K} \cdot g_{K}\right)^{\bmod p} \bmod q$
5 Apply CRT and undo the Kronecker map:

$$
h=3900 x^{47} y^{79}+1200 x^{29} y^{92}+5070 x^{72} y^{42}+2028 x^{79} y^{18}-768 x^{43} y^{44}
$$

Complexity Overview

Non-toy example
1000 terms, 8 variables, 64-bit coefficients, 32-bit exponents
Structural sparsity 10000, arithmetic sparsity 1000

Complexity Overview

Non-toy example
1000 terms, 8 variables, 64-bit coefficients, 32-bit exponents
Structural sparsity 10000, arithmetic sparsity 1000
Steps of the algorithm
1 Estimate structural sparsity

Complexity Overview

Non-toy example
1000 terms, 8 variables, 64-bit coefficients, 32-bit exponents
Structural sparsity 10000, arithmetic sparsity 1000
Steps of the algorithm
1 Estimate structural sparsity

2 Compute structural support

Complexity Overview

Non-toy example
1000 terms, 8 variables, 64-bit coefficients, 32-bit exponents
Structural sparsity 10000, arithmetic sparsity 1000
Steps of the algorithm
1 Estimate structural sparsity

2 Compute structural support

3 Trim to arithmetic support

Complexity Overview

Non-toy example
1000 terms, 8 variables, 64-bit coefficients, 32-bit exponents
Structural sparsity 10000, arithmetic sparsity 1000
Steps of the algorithm
1 Estimate structural sparsity

2 Compute structural support

3 Trim to arithmetic support

4 Compute coefficients

Summary

$$
\begin{array}{ll}
C=\text { |largest coefficient } \mid & S=\text { structural sparsity } \\
D=\text { max degree } & T=\text { arithmetic sparsity }
\end{array}
$$

Theorem

Given $f, g \in \mathbb{Z}[x]$, our Monte Carlo algorithm computes $h=f g$ with $O^{\sim}(S \log C+T \log D)$ bit complexity.

Extends to softly-linear time algorithms for

- Multivariate polynomials
- Laurent polynomials
- Modular rings, finite fields, exact rationals

Two useful subroutines

Sumset

Given sets $A, B \subset \mathbb{Z}$, compute
$S=\{a+b \mid a \in A, b \in B\}$.

Sparse multiplication with known support

Given $f, g \in \mathbb{Z}[x]$ and the exponents of $f \cdot g$, compute the coefficients of $f \cdot g$.

We provide softly linear-time solutions to both problems.
(They correspond to steps 1-2 and steps 3-4, resp.)

What's left to do? (Lots!)

- Make an efficient (parallel) implementation
- Decrease randomness (Las Vegas? Deterministic?)
- Make cost dependent on arithmetic sparsity
- Start worrying about the log factors
- Apply improvements to other problems (division, interpolation, ...)

