
Let F be a field and f (x) ∈ F[x] of degree n, and write

f (x) = a1x
e1 + a2x

e2 + · · · + atx
et,

with a1, . . . , at ∈ F \ {0}, e1, . . . , et ∈ Z+, and e1 < e2 < . . . < et = n.

This corresponds to the sparse representation of f (x) by a list of nonzero
coefficient-exponent pairs 〈(a1, e1), (a2, e2), . . . , (at, et)〉.

Size is
∑t

i=1(size(ai) + lg ei)

• Can be exponentially smaller than the dense size

• This representation is the default in Maple, Mathematica, etc.

Operations on polynomials which are in P when the input is given in the dense
representation may or may not be tractable when the input is given in the sparse
representation.

For instance, we can interpolate [1; 7] and find low-degree factors [2; 9] of lacunary
polynomals, but it is NP-Hard to compute GCDs [10]. For some basic operations,
such as a divisibility test, neither a P-time algorithm nor a hardness result is
known.

Definition (Sparse Shifts). If f (x) has at most t nonzero terms in the shifted
power basis 1, (x − α), (x − α)2, . . ., for some α ∈ F, then we say
α is a t-sparse shift for f (x).

Theorem (Lakshman & Saunders [8]). If t ≤ d+1
2 , then there is at most one

t-sparse shift for a given polynomial f (x) ∈ F[x].

P-time algorithms to find sparsest shift when input is given as dense [8; 5].

Goal: an algorithm to find the sparsest shift of f (x) given a black box for
evaluation, with complexity polynomial in the size of the sparsest shift.

We have a solution to a particular instance of this problem:
Let f (x) ∈ Z[x], and suppose we are given a black box which takes
θ ∈ Z and a prime p, and returns f (θ) mod p.

(θ, p) ∈ Z × Z - - f (θ) mod p

f (x) ∈ Z[x]

The blackbox mod p model for interpolation

• Let p be a prime with p ≥ t2.
From Fermat’s Little Theorem, ap−1 ≡ 1 mod p whenever p ∤ a.
So ∃ fp(x) ∈ Zp[x] with deg fp ≤ p − 2 s.t. fp(θ) ≡ f (θ) mod p for all θ ∈ Z.

• If f (x) =
∑t

i=1 ai(x − α)ei, then

fp(x) =

t∑

i=1

(ai mod p) (x − (α mod p))ei mod (p−1)
,

and therefore α is a t-sparse shift for fp(x).

1. Choose a prime p from a sufficiently large set such that t2 < p < tO(1).

2. Use the black box to compute vi = f (i) mod p for i = 1, 2, . . . , p − 1.

3. Use (dense) Lagrange interpolation to find fp(x).

4. If deg(fp(x)) ≥ 2t − 1, then use the algorithm from [5]
to find the sparsest shift αp in Zp.

5. Repeat O(log α) times until α can be recovered from the αp’s
via Chinese Remaindering

p−1







· · · fp(x)

f (x)

n
︷ ︸︸ ︷

· · ·
@

@
@

@
@

@R ?

�������������

−→

The basic idea for sparse shift interpolation. The colored bars represent
nonzero coefficients. The polynomial fp(x) is really a sum of sections of f (x).

• If deg fp ≥ 2t − 1, then from [8], α mod p is the sparsest shift,
since it is a t-sparse shift (from before).

• α must be the root of n − t derivatives of f (x).
Roots of any derivative of f (x) in Z are bounded by the maximal and minimal
roots of f (x) itself, which in turn must divide the trailing coefficient of f (x).
So the size of α is less than the size of f (x).

• Still remains to construct the set of primes S such that deg fp ≥ 2t−1 with high
probability. This is true asymptotically, but we don’t have practical bounds yet.

• Algorithm runs in polynomial time in the sparse size of f (x + α).

Functional Decomposition Problem (univariate, simple): Given
f (x) ∈ F[x], find g(x), h(x) ∈ F[x] with deg g, deg h ≥ 2 and f (x) = g(h(x)).

Well-studied problem when input is given in the dense representation. The usual
approach is to find h(x) first, then use h to find g(x).

Problem:

Given f (x), find g(x) and h(x) such that f (x) = g(h(x)).

• f (x) is given in the α-shifted power basis

• g(x) is returned in the sparsest shifted power basis, β

• h(x) is returned in the α-shifted power basis

• Polynomial time in the size of the input and output

Can assume that f, g, h are all monic and α = β = 0, since

f (x + α)

lc(f )
=

(
g (lc(h)(x + β))

lc(f )

)

◦

(
h(x + α)

lc(h)
− β

)

And let n = deg f , r = deg g, and s = deg h so that n = rs.

f (x) and h(x) agree in their high-order s coefficients (see figure). So if we define
f̃ (x) = xnf (1

x
) and h̃(x) = xsh(1

x
), the reversals of f and h, then

f̃ (x) ≡ h̃(x)r mod xs. (1)

• This uniquely determines h(x) up to the constant term.

• Can be solved with O(sO(1)) field operations, as in [12]

So if s is small, we can find h(x) in polynomial time in the sparse size of f (x).

Question: How to efficiently check whether a given h(x)
is a right composition factor of f (x)?

Let Ψh(x, y) = h(x) − h(y) and Ψf(x, y) = f (x) − f (y)

• h(x) is a right composition factor of f (x) iff Ψh(x, y) | Ψf(x, y) [4]

• Note Ψh(x, y) does not depend on h(0)

[6] gives a method to efficiently check whether a low-degree bivariate factor divides
a high-degree sparse bivariate polynomial. We can use this method to efficiently
(probabilistically) check whether Ψh(x, y) | Ψf(x, y), thereby checking whether
the h(x) we have found is correct.

Conjecture (Schinzel [11]). If any power of a polynomial is sparse, then the
polynomial itself must also be sparse.

Subject to this conjecture, we can compute h(x)
(up to its constant coefficient) in polynomial time in the size of f
and the size of h, by using a careful Newton-like iteration.

Let h̃1(x) and h̃2(x) be polynomials of degree k and l such that

h̃(x) ≡ h̃1(x) + h̃2(x)xk mod xk+l,

where k, l ∈ Z with 1 ≤ l ≤ k and k + l ≤ s.

Then, from (1) and the binomial theorem,

f̃ (x) ≡ h̃1(x)r + rh̃1(x)r−1h̃2(x)xk mod xk+l. (2)

Through some careful manipulation, we obtain

h̃1(x)r+1 ≡ h̃1(x)f̃ (x) − rf̃ (x)h̃2(x)xk mod xk+l.

So h̃1(x)r+1 mod xk+l is sparse, and therefore from
Shinzel’s conjecture, we can compute it by repeated squaring.

Manipulating (1) again, we see that

(
1

rxk

)
(
h̃1(x)f̃ (x) − h̃1(x)r+1

)
≡ f̃ (x)h̃2(x) mod xl.

We can compute the quotient of the left-hand side divided by f̃ (x) mod xl in poly-
nomial time since the quotient, h̃2(x), is sparse, and f̃(x) has constant coefficient
equal to 1.

So, to find h(x), we start with h̃1(x) = 1 (since h(x) is monic), and repeat the
iteration approximately log2 s times to recover h(x) in polynomial time in the size
of f and h.

Suppose g(x) in sparse form is g1x
e1 + g2x

e2 + · · · + gtx
et.

g1h(x)e1

... ...
gt−1h(x)et−1

gth(x)et

f = g ◦ h

An illustration of the composition of two polynomials. Since we can assume
gt = 1 and et = r, the top terms of f (x) agree with those of h(x)r.

We now show how to find g(x) when h(x) − h(0) is known,
using dense interpolation.

1. Choose r + 1 distinct points θ0, . . . , θr ∈ F

2. Compute ui = h(θi) − h(0) and vi = f (θi) for i = 0, . . . , r

3. Use Lagrange interpolation to compute g(x + h(0)).

4. Use the sparsest shift algorithm of [5] to find h(0),
and finally compute g(x) and h(x)

We need all the ui’s to be distinct; the Schwartz-Zippell Lemma guarantees this
with high probability if the θi’s are chosen from a large enough set.

Also note that over some fields (for instance Z), evaluating a large sparse polyno-
mial at a point is actually intractable (the size of the output can be exponentially
large). In this case, a modular evaluation approach combined with Chinese Re-
maindering will likely be necessary.

• Using our sparsest shift interpolation algorithm to find
g(x) of high degree given h(x)

• Extending the sparsest shift interpolation algorithm
to work over fields other than Z[x]

• Eliminating the dependency of the algorithm for
finding high-degree h(x) on any conjectures

• Removing the output-sensitivity of the runtime (i.e. proving that h(x) and g(x)
are always sparse when f (x) is sparse) — relates to [3] (and many others).

• Finding an algorithm to certify candidate right composition factors h(x) of high
degree. Note that an algorithm to perform a parse polynomial divisibility check
would solve this.

[1] Ben-Or and Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. STOC ’88.

[2] Cucker, Koiran, Smale. A polynomial time algorithm for Diophantine equations in one variable. JSC, 1999.

[3] P. Erdös. On the number of terms of the square of a polynomial. Nieuw Arch. Wiskunde (2), 23:63–65, 1949.

[4] M. D. Fried and R. E. MacRae. On the invariance of chains of fields. Illinois J. Math., 13:165–171, 1969.

[5] Giesbrecht, Kaltofen, Lee. Algorithms for computing sparsest shifts of polynomials in power, Chebyshev and
Pochhammer bases. JSC, 2003. (ISSAC’2002).

[6] Kaltofen and Koiran. On the complexity of factoring bivariate supersparse (lacunary) polynomials. ISSAC’05

[7] Kaltofen and Lee. Early termination in sparse interpolation algorithms. JSC, 2003. (ISSAC’2002).

[8] Y. N. Lakshman and B. D. Saunders. Sparse shifts for univariate polynomials. Appl. Algebra Engrg. Comm.
Comput., 7(5):351–364, 1996.

[9] H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomials. In Number theory in progress, Vol.
1 (Zakopane-Kościelisko, 1997), pages 267–276. de Gruyter, Berlin, 1999.

[10] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems. Theoret. Comput.
Sci., 31(1-2):125–138, 1984.

[11] A. Schinzel. On the number of terms of a power of a polynomial. Acta Arith., 49(1):55–70, 1987.

[12] J. von zur Gathen. Functional decomposition of polynomials: the tame case. JSC, 1990.


