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The Problem

The basic sparse interpolation problem is as follows:
Given a black box (i.e. way to evaluate)
an unknown polynomial

f = c1xe1 + c2xe2 + · · ·+ ctxet ,

determine the coefficients ci and exponents ei.

We are interested in two cases:
I Coefficients come from a large, unchosen finite field
I Coefficients are approximations to complex numbers

Remainder Black Box

A remainder black box takes a monic polynomial g
and evaluates f rem g.

Example: unknown polynomial is

f = 5x6 − 20x139 + 16x218 − 3x381.

Given g = x10 − 1, the black box returns

f rem g = −3x + 5x6 + 16x8 − 20x9.

Observe: exponents reduced modulo 10.

Garg and Schost’s Algorithm

Garg & Schost (TCS 2009): first polynomial-time algorithm
for sparse interpolation over a large, unchosen finite field.

Overview: Given remainder black box for unknown

f = c1xe1 + c2xe2 + · · ·+ ctxet ,

define the unknown integer polynomial

Γ(z) = (z − e1)(z − e2) · · · (z − et) ∈ Z[z].
For primes p ∈ O(t2 log deg f ), evaluate f rem xp − 1.
This gives us the set {e1 rem p, e2 rem p, . . . et rem p},
from which the coefficients of Γ mod p can be computed.

Repeating O(t2 log d) times gives the coefficients of Γ , and
we perform root finding over Z[z] to find the exponents ei.

Diversification

I We call a polynomial with all coefficients distinct diverse.
I Diverse polynomials are easier to interpolate.
I We use randomization to create diversity.

Theorem. If q � t2 deg f , f ∈ Fq[x ], and α ∈ Fq is chosen
randomly, then f (αx) is probably diverse.

Theorem. If f ∈ C[x ] has large coefficients and ζ is an
order-O(t2) root of unity, f (ζx) is probably diverse.

Diversity in the latter case (approximate) means sufficiently
separated coefficients.

Example over finite field F101

Let f = 57 + 5x74 + 57x76 + 5x92 ∈ F101[x ] be unknown.
Note that f is not diverse.

Diversify. Randomly choose α ∈ F101: α = 21.
Also choose p1 ∈ O(t2 log deg f ): p1 = 11, and evaluate

f (αx) rem(x11 − 1) = 57 + x4 + 19x8 + 15x10.

This gives sparsity t = 4 and shows that f (αx) is diverse.

Further evaluations. Let p2 = 5 and p3 = 7. Evaluate

f (αx) rem(x5 − 1) = 57 + 15x + x2 + 19x4

f (αx) rem(x7 − 1) = 57 + x + 19x4 + 15x6.

Recover exponents. Because we know p1p2p3 > deg f ,
like terms are correlated using the diverse coefficients,
and then exponents are found by Chinese remaindering:

e1 = 0, e2 = 74, e3 = 76, e4 = 92.

Recover coefficients. Once we know the exponents, the
coefficients are determined from any modular evaluation.

Summary of results

Finite fields: Randomized cost is O (̃t2 log2 deg f ).

Approximate: In the same time, and with ε noise, we can
compute a g ∈ C[x ] such that ‖f − g‖2 < ε‖f‖2.

Finite field implementation experiments
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Experimental stability in approximate algorithm

Noise Mean Error Median Error Max Error
0 4.440 e−16 4.402 e−16 8.003 e−16
±10−12 1.113 e−14 1.119 e−14 1.179 e−14
±10−9 1.149 e−11 1.191 e−11 1.248 e−11
±10−6 1.145 e−8 1.149 e−8 1.281 e−8

Extending to multivariate

Now consider an unknown multivariate f ∈ F[x1, . . . , xn].
We can perform sparse interpolation in one of two ways:

Kronecker substitution. Consider the polynomial

f̂ = f (y , yd , yd2
, . . . , ydn−1

).

If d > degxi
f for all i , then the terms of the univariate

polynomial f̂ correspond to those of f .

Zippel’s method. Zippel’s multivariate interpolation
algorithm can be hybridized with our univariate algorithms.
The method is randomized and works variable-by-variable,
resulting in more univariate calls with lower degrees.
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