The Problem

The basic sparse interpolation problem is as follows: Given a black box (i.e. way to evaluate) an unknown polynomial

$$
f=c_{1} x^{e_{1}}+c_{2} x^{e_{2}}+\cdots+c_{t} x^{e_{t}}
$$

determine the coefficients c_{i} and exponents e_{i}.
We are interested in two cases:
Coefficients come from a large, unchosen finite field

- Coefficients are approximations to complex numbers

Remainder Black Box

A remainder black box takes a monic polynomial g and evaluates f rem g.

Example: unknown polynomial is

$$
f=5 x^{6}-20 x^{139}+16 x^{218}-3 x^{381}
$$

Given $g=x^{10}-1$, the black box returns

$$
f \text { rem } g=-3 x+5 x^{6}+16 x^{8}-20 x^{9}
$$

Observe: exponents reduced modulo 10

Garg and Schost's Algorithm

Garg \& Schost (TCS 2009): first polynomial-time algorithm for sparse interpolation over a large, unchosen finite field.

Overview: Given remainder black box for unknown

$$
f=c_{1} x^{e_{1}}+c_{2} x^{e_{2}}+\cdots+c_{t} x^{e_{t}}
$$

define the unknown integer polynomial

$$
\Gamma(z)=\left(z-e_{1}\right)\left(z-e_{2}\right) \cdots\left(z-e_{t}\right) \in \mathbb{Z}[z] .
$$

For primes $p \in O\left(t^{2} \log \operatorname{deg} f\right)$, evaluate f rem $x^{p}-1$. This gives us the set $\left\{e_{1}\right.$ rem p, e_{2} rem $p, \ldots e_{t}$ rem $\left.p\right\}$, from which the coefficients of $\Gamma \bmod p$ can be computed.

Repeating $O\left(t^{2} \log d\right)$ times gives the coefficients of Γ, and we perform root finding over $\mathbb{Z}[z]$ to find the exponents e_{i}.

Diversification

Finite field implementation experiments

We call a polynomial with all coefficients distinct diverse Diverse polynomials are easier to interpolate.

- We use randomization to create diversity.

Theorem. If $q \gg t^{2} \operatorname{deg} f, f \in \mathbb{F}_{q}[x]$, and $\alpha \in \mathbb{F}_{q}$ is chosen randomly, then $f(\alpha x)$ is probably diverse.

Theorem. If $f \in \mathbb{C}[x]$ has large coefficients and ζ is an order- $O\left(t^{2}\right)$ root of unity, $f(\zeta x)$ is probably diverse.
Diversity in the latter case (approximate) means sufficiently separated coefficients.

Example over finite field \mathbb{F}_{101}

Let $f=57+5 x^{74}+57 x^{76}+5 x^{92} \in \mathbb{F}_{101}[x]$ be unknown. Note that f is not diverse.

Diversify. Randomly choose $\alpha \in \mathbb{F}_{101}: \alpha=21$.
Also choose $p_{1} \in O\left(t^{2} \log \operatorname{deg} f\right): p_{1}=11$, and evaluate

$$
f(\alpha x) \operatorname{rem}\left(x^{11}-1\right)=57+x^{4}+19 x^{8}+15 x^{10}
$$

This gives sparsity $t=4$ and shows that $f(\alpha x)$ is diverse.
Further evaluations. Let $p_{2}=5$ and $p_{3}=7$. Evaluate

$$
\begin{aligned}
& f(\alpha x) \operatorname{rem}\left(x^{5}-1\right)=57+15 x+x^{2}+19 x^{4} \\
& f(\alpha x) \operatorname{rem}\left(x^{7}-1\right)=57+x+19 x^{4}+15 x^{6}
\end{aligned}
$$

Experimental stability in approximate algorithm

Noise	Mean Error	Median Error	Max Error
0	$4.440 \mathrm{e}-16$	$4.402 \mathrm{e}-16$	$8.003 \mathrm{e}-16$
$\pm 10^{-12}$	$1.113 \mathrm{e}-14$	$1.119 \mathrm{e}-14$	$1.179 \mathrm{e}-14$
$\pm 10^{-9}$	$1.149 \mathrm{e}-11$	$1.191 \mathrm{e}-11$	$1.248 \mathrm{e}-11$
$\pm 10^{-6}$	$1.145 \mathrm{e}-8$	$1.149 \mathrm{e}-8$	$1.281 \mathrm{e}-8$

Extending to multivariate

Recover exponents. Because we know $p_{1} p_{2} p_{3}>\operatorname{deg} f$, like terms are correlated using the diverse coefficients, and then exponents are found by Chinese remaindering:

$$
e_{1}=0, \quad e_{2}=74, \quad e_{3}=76, \quad e_{4}=92
$$

Recover coefficients. Once we know the exponents, the coefficients are determined from any modular evaluation.

Summary of results

Finite fields: Randomized cost is $O^{\sim}\left(t^{2} \log ^{2} \operatorname{deg} f\right)$.
Approximate: In the same time, and with ϵ noise, we can compute a $g \in \mathbb{C}[x]$ such that $\|f-g\|_{2}<\epsilon\|f\|_{2}$.

Now consider an unknown multivariate $f \in \mathrm{~F}\left[x_{1}, \ldots, x_{n}\right]$. We can perform sparse interpolation in one of two ways:

Kronecker substitution. Consider the polynomial

$$
\hat{f}=f\left(y, y^{d}, y^{d^{2}}, \ldots, y^{d^{n-1}}\right) .
$$

If $d>\operatorname{deg}_{x_{i}} f$ for all i, then the terms of the univariate polynomial \hat{f} correspond to those of f.

Zippel's method. Zippel's multivariate interpolation algorithm can be hybridized with our univariate algorithms. The method is randomized and works variable-by-variable, resulting in more univariate calls with lower degrees.

