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Interpolation

General Problem

Determining a function from its values.

Goals

m Find the simplest possible formula.
m Don't take too long.

Necessities

m What type of function? (output type)
m How big can it be? (output size)



Interpolation

Example

f = (x—3)197 - 485% — 3>

Suppose we can evaluate f(6) at any chosen point 6.

m Can we find a formula for f?
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Interpolation

Example

f = (x—3)197 - 485% — 3>

Suppose we can evaluate f(6) at any chosen point 6.

m Can we find a simple formula for f
in a reasonable amount of time?



Polynomial Interpolation

Dense Methods

Definition (Dense Representation)

f=ag+aX+a®+---+aX",

where n = degf) and ag,a3,...,a, € R

m Studied by Newton (1711), Waring (1779), ...
m Highly efficient implementations available



Polynomial Interpolation

Dense Methods

Definition (Dense Representation)

f=ag+aX+a®+---+aX",

where n = degf) and ag,a3,...,a, € R

Example

For f = (x — 3)107 — 485 — 3)>*, we will have

f = x107 — 321x106 1+ 51039195 — 535909514 + . ..
+402009927496590798548375851523117926743035901448493
— 112713063784090878097676869341986019782845898984815

This is way too big! (twice exponential in the desired size)



Lacunary Polynomial

(Lacunary polynomials are sometimes called sparse or
supersparse.)

m Default representation in Maple, Mathematica, etc.

m Some things are hard (Plaisted 1977, 1984)

m Some things aren’t: Interpolation, finding low-degree factors
m Some things are unknown!



Lacunary Polynomial Interpolation
Sparse Methods

Definition (Lacunary Representation)

f = bo + byx® + boX® + - - - + by,
whered; <dy <---<ds=nandbg,...,bse R\ {0}

m Baron de Prony (1795), Ben-Or & Tiwari (1988),
Kaltofen, Lakshman, Wiley, Lee, Lobo, ...

m Need to choose evaluation points
m R must have a high-order element and a fast logarithm.



Lacunary Polynomial Interpolation
Sparse Methods

Definition (Lacunary Representation)

f = bo + byx® + boX® + - - - + by,
whered; <dy <---<ds=nandbg,...,bse R\ {0}

Example

If f = (x— 3)107 — 485 — 3)>4,
this helps iff we know the sparsest shift 3,
since f(x + 3) = x197 — 485¢°* is 2-sparse.



Shifted-Lacunary Polynomial Interpolation

Definition (Shifted-Lacunary Representation)

f=co+ci(X— @) +co(X— @) + -+ + (X — @)%,

where g < --- < & =nandtis minimal for any «

m This is our problem.

m Can be reduced to finding the sparsest shift a.
m We restrict the domain to Q[X].

m No previous polynomial-time algorithm known.



e
Complexity of Shifted-Lacunary Polynomial Interpolation

We give an algorithm with
output-sensitive polynomial-time complexity,
specifically, bit complexity polynomial in:

m Number of nonzero terms t
m Logarithm of the degree n
m Size of the coefficients cy,...,C
m Size of the sparsest shift
Black box calls are assumed to have constant cost.



e
Computing the Sparsest Shift

m Borodin & Tiwari (1991)
Compute sparsest shift from evaluation points (open)

m Grigoriev & Karpinski (1993)
Compute sparsest shift from a black-box function.
State need for complexity not polynomial in n
m Lakshman & Saunders (1996)
Compute sparsest shift from dense representation
m Giesbrecht, Kaltofen, Lee (2003)
Current best results (deterministic & probabilistic)



e
Uniqueness and Rationality of Sparsest Shift

Theorem (Lakshman & Saunders (1996))

If the degree is at least twice the sparsity,
then the sparsest shift is unique and rational.

Example

f = (x—3)%7 - 485K — 3)>*

= 3 is the only shift with < 54 terms

Condition not satisfied means polynomial is dense.



.
Black Box Model

Arbitrary evaluations will usually be very large:

Example

f
f(1)

(x - 3)107_ 485K — 3)°*
—162259276829222100374855109050368

To control evaluation size, use modular arithmetic:

The “Modular Black-Box”

f e QX



Modular Reductions

Definition (Rational remainder)

aremm=b iff a=bmodm and O<b<m

Definition (Shifted remainder)

arempm=Db iff a=bmodm and 1<b<m

Definition (Modular-reduced Polynomial)

For f € Q[X], f® is the unique polynomial in Zp[X]
with degree less than p such that f = f® mod ° — x).



Modular-Reduced Polynomial

Definition
f= ¢ + aX-a)® oot G (x—a)®
v v v v

f(P) = (cgremp)+(Ciremp) (X — ap)Breme . 4 (Cpremp) (X — ap) MY,

where ap = @ modp.

m f(@)remp=fP@remp), VoezZ
(Fermat's Little Theorem)

m apis at least a t-sparse shift of f®



Pretty Picture #1

fe) LT 11 0 1 [Tl




Pretty Picture #2

m Red squares indicate nonzero terms in the polynomial.
m The reel is the unit circle in Z,.



e
Outline of Algorithm

Input: Bound B on the bit length of the

lacunary-shifted representation
Choose a prime p with p € O(B°D)
Evaluate f(0),f(1),...,f(p— 1) remp to interpolate f®.
Use a dense sparsest shift method to compute
Repeat Steps 1-3 enough times to recover a



Example

Unknown Polynomial in Q[X]
f = (x— 3)107 - 485( — 3)%*

Choose a prime p with p € O(B°Y)

Step 1
p=11



Example

Unknown Polynomial in Q[X]
f = (x— 3)107 - 485( — 3)%

Choose a prime p with p € O(B°Y)
Evaluate f(0),f(1),...,f(p— 1) remp to interpolate f®

Step 2
f(0),f(1),...,f(p—1)remp=9,10,9,0,0,2,5,2,5,10,3

fP = x" + X6+ 20+ 93 + 2x% + 8x+ 9



Example

Unknown Polynomial in Q[X]
f = (x—3)197 - 485( — 3)>*

Choose a prime p with p € O(B°Y)
Evaluate f(0),f(1),...,f(p — 1) remp to interpolate f (P
Use a dense sparsest shift method to compute ay

Step 3
fP) = (x—3)" + 10(x — 3)* modp

a’p:\?)



Example

Unknown Polynomial in Q[X]
f = (x— 3)107 - 485( — 3)%*

Choose a prime p with p € O(B°D)

Evaluate f(0),f(1),...,f(p— 1) remp to interpolate f®
Use a dense sparsest shift method to compute a;
Repeat Steps 1-3 enough times to recover «

Step 4

@11=3, a13=3, a17=3,

a=3



When Can Failures Occur?

m Every step is guaranteed to succeed, except when
ap is not the unique sparsest shift of f®.

Theorem
The method succeeds whenever degf ® > 2t.

Next we develop sufficient conditions on p to avoid failure.



Exponents Too Small

Sparsest shift of f® is not a,

f=—-4(x-2)"*+14x-2)5+3

p=13
fA3 = ox—2)'+ (x-2)P+3
= (x-4)2%+12

Condition: (p-1)fa(a-1)@-2)--- (& - (2 -2)



Exponents Collide

Sparsest shift of f® is not a,

f=4x-1)+2(x- 1?2+ 7(x- 1)'°+ 20
p=11
4D = 4x-1)°+ 2 1)+ 7(x - 1)° + 9
2x-1)+9
2x—2)

Condition: (p-1)1 (& -el)(&— &) - (& —€&-1)



Coefficients Vanish

Sparsest shift of f® is not a,

f =69 —5)2—12x-5%>+4
p=23
£ = ox-5%"+11x-5)'+4
11x-5)+4
11 — 13)

Condition: p1 ¢



Sufficient Conditions
Definition

t-1 -1 2t-2 5
C=maxe,1}-[ [e-[[@-@)- [ [(a-i) <2®
i=2 i=1 i=0

Sufficient Conditions for Success

Ep1C
= (p-1)+C

Approach

Choose primes p = gk + 1, for distinct primes q.
ql(p-1)soqtC=(p-1)tC.



Generating Good Primes

Definition
For g € Z, Yq) is the smallest prime p
such that q|(p — 1).

Theorem (Mikawa 2001)

There exists a constant u such that, for all n > u, and for
most of the integers g € {n,n+1,...,2n}, Yq) < g-%°.



e
Prime Choosing Algorithm

g < next smallest prime

If ) < g*®°, add q) to P
Repeat until |P| is sufficiently large.

% must contain Q(B?) “good” primes,
so we only iterate O7(B?) times.



e
Complexity

m Step 3 (computing sparsest shift of fP)) dominates.
m Cost of this step is O(B*M(B3p?)) bit operations
(using deterministic algorithm from Giesbrecht et al. 2003)

Bit Complexity
O(B3 . M(BIO.SG |0g15412 B) . M(Iog2 B) — O~(BlS.56)

Can be faster by using probabilistic methods and/or heuristics.



.
Problem

Given a € Q, we have a modular black box for
the t-sparse polynomial f (X + @) € Q[X].
Question

How to recover f € Q[X] from a € Q
and images f® e Z[x]?

Example

f 12x% + 3x%° + 9x12
O = 3x8 4+ 3%+ 5¢¢
fAD = 3x9 4+ x84+ 9x?

How can we match up the exponents?



Summary of Sparsest Shift Computation Techniques

Deterministic Algorithm

Actual complexity only O(B?°) unless ERH is false.

Probabilistic Algorithm

Always correct and (provably) probably much faster.

Heuristic

Faster in practice and provably never wrong, but might not
terminate



Interpolation

Once « is known, we can construct a modular black box
for evaluating f (X + ).

Then use lacunary interpolation along the lines of
Kaltofen, Lakshman, & Wiley (1990) and
Avendafio, Krick, & Pacetti (2006).



-
Conclusions

m Shifted-lacunary interpolation can be performed
in polynomial time, for rational polynomials
given by a modular black box.

m How to apply these techniques to
other problems on lacunary polynomials?

m What about domains other than Q[x]?
m What about multivariate rational polynomials?



