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Interpolating an unknown polynomial

Example

f = (x − 3)107 − 485(x − 3)54

Suppose we can evaluate f (θ) at any chosen point θ.

Can we find a formula for f ?

in a reasonable amount of time?
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Shifted-Lacunary Interpolation

Want to interpolate an unknown polynomial f ∈ Q[x] into:

Definition (Shifted-Lacunary Representation)

f = c0 + c1(x − α)e1 + c2(x − α)e2 + · · · + ct(x − α)et ,

where e1 < · · · < et = n and t is minimal for any α

Can be reduced to finding the sparsest shift α.

No previous polynomial-time algorithm known.
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Black Box Model

Arbitrary evaluations will usually be very large:

Example

f = (x − 3)107 − 485(x − 3)54

f (1) = −162259276829222100374855109050368

To control evaluation size, use modular arithmetic:

The “Modular Black-Box”

p ∈ N, θ ∈ Zp
- - f (θ) mod p

f ∈ Q[x]
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Modular-Reduced Polynomial

Definition (Modular-reduced Polynomial)

For f ∈ Q[x], f (p) is the unique polynomial in Zp[x]
with degree less than p such that f ≡ f (p) mod (xp − x).

f (θ) rem p = f (p)(θ rem p), ∀θ ∈ Z (Fermat’s Little Theorem)

αp, the sparsest shift of f (p), is at worst a t-sparse shift of f (p)

Example

f = −4(x − 2)145 + 14(x − 2)26 + 3

f (11) = 3x6 + 4x5 + 9x3 + 6x2 + 6x + 4

= 7(x − 2)5 + 3(x − 2)6 + 3
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Visual description of f (p)

p − 1
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Uniqueness and Rationality of Sparsest Shift

Theorem (Lakshman & Saunders (1996))

If the degree is at least twice the sparsity,
then the sparsest shift is unique and rational.

Corollary

If deg f (p) ≥ 2t, then αp ≡ α (mod p)

Condition not satisfied means p is a “bad prime”,
or the polynomial is dense.
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Outline of Algorithm

Input: Modular black box for f ∈ Q[x],
Bound B on the bit length of the lacunary-shifted representation

1 Choose a prime p

2 Evaluate f (0), f (1), . . . , f (p − 1) rem p to interpolate f (p).

3 If deg f (p) ≥ 2t, then compute sparsest shift αp of f (p)

4 Repeat Steps 1–3 enough times to recover α

5 Use sparse interpolation to recover f (x + α)

The challenge: Choosing primes on Step 1
so that Step 3 will succeed
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Bad prime: Exponents Too Small

Sparsest shift of f (p) is not αp

f = −4(x − 2)145 + 14(x − 2)26 + 3

p = 13

f (13) = 9(x − 2)1 + (x − 2)2 + 3

≡ (x − 4)2 + 12

Condition: (p − 1) - et(et − 1)(et − 2) · · · (et − (2t − 2))
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Bad prime: Exponents Collide

Sparsest shift of f (p) is not αp

f = 4(x − 1)59 + 2(x − 1)21 + 7(x − 1)19 + 20

p = 11

f (11) = 4(x − 1)9 + 2(x − 1)1 + 7(x − 1)9 + 9

= 2(x − 1) + 9

≡ 2(x − 2)

Condition: (p − 1) - (et − e1)(et − e2) · · · (et − et−1)
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Bad prime: Coefficients Vanish

Sparsest shift of f (p) is not αp

f = 69(x − 5)42 − 12(x − 5)23 + 4

p = 23

f (23) = 0(x − 5)20 + 11(x − 5)1 + 4

= 11(x − 5) + 4

≡ 11(x − 13)

Condition: p - ct
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Sufficient Conditions

Definition

C =

t−1∏
i=1

ei ·

t−1∏
i=1

(et − ei) ·
2t−2∏
i=0

(et − i) ≤ 24B2

Sufficient Conditions for Success

p - ct

(p − 1) - C
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Generating Good Primes

The Problem:

Given β1 > log2 ct, β2 > log2 C, and `
find ` small primes p such that p - ct and (p − 1) - C.

Primes-in-arithmetic-progressions approach

Choose primes p = qk + 1, for distinct primes q.
q | (p − 1), so q - C ⇒ (p − 1) - C.
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A brief history of primes
(in arithmetic progressions)

Definition

For q ∈ Z, S(q) is the smallest prime p such that q|(p − 1).

Dirichlet (1837): S(q) exists

Linnik (1944): S(q) < cqL for some L > 0

Heath-Brown (1992): S(q) < cq5.5

For most q:

Bombieri, Friedlander, Iwaniec (1987): S(q) < cq2

Rousselet (1988): S(q) < q2 (more explicit)

Baker & Harman (1996): S(q) < q1.93

Mikawa (2001): S(q) < q1.89
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Mikawa’s Result

Fact (Mikawa 2001)

There exists a constant µ such that, for all n > µ, and for
most of the integers q ∈ {n, n + 1, . . . , 2n},
with less than µn/ log2 n exceptions, S(q) < q1.89.

Theorem

For any k ∈ N, we can construct a set
Q of primes such that the set P = {S(q) : q ∈ Q}
has at least k distinct elements, and
each p ∈ P is O(k1.89 · log1.89 k).
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Proof of Prime Generation Theorem

Proof sketch

For convenience, define Υ(n) =
3n

5 log n
−

µn

log2 n

Let n ∈ N such that n > 21, n > µ, and Υ(n) > k. (µ is just a guess.)

Define Q =
{
q prime: n ≤ q < 2n and S(q) < q1.89

}
Since n > 21, #

{
q prime: n ≤ q < 2n

}
≥ 3n/(5 log n).

Therefore #P = #Q > Υ(n) > k.

(If not, then µ was too small, so double it.)

To make Υ(n) > k, we have n ∈ O(k log k).
Each p ∈ P is O(n1.89), so p ∈ O(k1.89 · log1.89 k).
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Complexity Implications

Theorem

Given a modular black box for unknown f ∈ Q[x] and
a bound B on the bit-length of the shifted-lacunary representation,
we can compute the sparsest shift α with
O
(
B8.56 log6.78 ·(loglog B)2 · logloglog B

)
bit operations.

In fact, we have confirmed for all word-sized q that S(q) < 2q log2 q.
Proving this would improve the complexity to O˜(B5).
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A different idea

We have chosen P so that the following is sufficiently large:

lcm
(
{p − 1 : p ∈ P}

)
≥

∏
q∈Q

q

How about using this directly?

Use the first n primes for the algorithm: p1, p2, . . . , pn.

Define Ψ(n) = lcm(p1 − 1, p2 − 1, . . . , pn − 1).

If Ψ(n) > C · pk
n, then at least k of the first n primes

satisfy (pi − 1) - C.
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Lower bounds on Ψ(n)

Notice that Ψ(n) = λ(Pn), where
λ(x) is the Carmichael lambda function,
and Pn =

∏n
i=1 pi is the nth primorial number.

There are lower bounds on λ(x), but they are either
too weak to be useful, or have too many exceptions.

Experimentally, we see strong evidence that Ψ(n) � 2n.
This would also give a O˜(B5) complexity
(with smaller log factors)
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Summary

Shifted-lacunary interpolation can be performed
in polynomial time, for rational polynomials
given by a modular black box.

How to apply these techniques to
other problems on lacunary polynomials?

What about domains other than Q[x]?

Prove that S(q) � q log2 q.

Prove that Ψ(n) � 2n.


