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What is a polynomial?

A polynomial is any formula involving +,−,× on indeterminates
and constants from a ring R.

Examples over R = Z

4x10 − 3x8 − x7 + 3x6 + x5 − 2x4 + 2x3 + 5x2

x451 − 9x324 − 3x306 + 9x299 + 4x196 − 9x155 − 2x144 + 10x27

6x484 − 9x482 + 10x481 − 2x33 − 2x32 − 7x29 + 8x28 − 7x27

−x426 − 6x273 + 10x246 − 10x210 + 2x156 − 9x48 − 3x21 − 9x12
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Polynomial Arithmetic

• Addition/subtraction of polynomials is trivial.

• Division uses multiplication as a subroutine.

• Multiplication is the most important basic computational
problem on polynomials.

Application areas

• Cryptography

• Coding theory

• Symbolic computation

• Scientific computing

• Experimental mathematics
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Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Dense representation:
0 5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 6 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 1

Degree d
n variables

t nonzero terms

Dense size:
O(dn) coefficients

O(tn log d) bits
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Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Recursive dense representation:
0 5 0 0

0 0 0 0

0 0 0 0

0 0 6 0

0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

7 0 0 0 0 0 0 0 0 0 1

Degree d
n variables

t nonzero terms

Recursive dense size:
O(tdn) coefficients

O(tn log d) bits
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Polynomial Representations

Let f = 7 + 5xy8 + 2x6y2 + 6x6y5 + x10.

Sparse representation:

0 8 2 5 0

0 1 6 6 10

7 5 2 6 1

Degree d
n variables

t nonzero terms

Sparse size:
O(t) coefficients
O(tn log d) bits
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Dense Multiplication Algorithms
Cost (in ring operations) of multiplying two univariate dense
polynomials with degrees less than d:

Cost

Classical Method O(d2)

Divide-and-Conquer
Karatsuba ’63

O(dlog2 3) or O(d1.59)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(d log d llog d)

We write M(d) for this cost.
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Sparse Multiplication Algorithms

Cost of multiplying two univariate sparse polynomials with degrees
less than d and at most t nonzero terms:

Ring operations Bit operations

Naı̈ve t2 O(t3 log d)

Geobuckets
(Yan ’98)

t2 O(t2 log t log d)

Heaps
(Johnson ’74)

(Monagan & Pearce ’07)
t2 O(t2 log t log d)
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Application: Cryptography

Public key cryptography is used extensively in communications.
There are two popular flavors:

RSA

Requires integer
computations modulo a large
integer (thousands of bits).
Long integer multiplication
algorithms are generally the
same as those for (dense)
polynomials.

ECC

Usually requires
computations in a finite
extension field — i.e.
computations modulo a
polynomial (degree in the
hundreds).

In both cases, sparse integers/polynomials are used to make
schemes more efficient.
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Application: Nonlinear Systems

Nonlinear systems of polynomial equations can be used to
describe and model a variety of physical phenomena.

Numerous methods can be used to solve nonlinear systems, but
usually:

• Inputs are sparse multivariate polynomials

• Intermediate values become dense.

One approach (used in triangular sets) simply switches from
sparse to dense methods heuristically.
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Adaptive multiplication

Goal: Develop algorithms which smoothly interpolate the cost
between existing dense and sparse methods.

Ground rules

1 The cost must never be greater than any standard dense or
sparse algorithm.

2 The cost should be less than both in many “easy cases”.
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Overall Approach

Overall Steps

1 Recognize structure

2 Change rep. to
exploit structure

3 Multiply

4 Convert back

• Step 3 cost depends
on instance difficulty.

• Steps 1, 2, 4 must be
fast (linear time).
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Chunky Polynomials

Example

• f = 5x6 + 6x7 − 4x9 − 7x52 + 4x53 + 3x76 + x78

• f1 = 5 + 6x − 4x3, f2 = −7 + 4x, f3 = 3 + x2

• f = f1x6 + f2x52 + f3x76
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Chunky Multiplication
Sparse algorithms on the outside, dense algorithms on the inside.
• Exponent arithmetic stays the same.
• Coefficient arithmetic is more costly.
• Terms in product may have more overlap.

Theorem

Given
f = f1xe1 + f2xe2 + · · · + ftxet

g = g1xd1 + g2xd2 + · · · + gsxds ,

the cost of chunky multiplication (in ring operations) is

O
( ∑

deg fi≥deg gj
1≤i≤t, 1≤j≤s

(deg fi) ·M
(
deg gj

deg fi

)
+

∑
deg fi<deg gj
1≤i≤t, 1≤j≤s

(deg gj) ·M
(

deg fi
deg gj

) )
.
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Conversion to the Chunky Representation

Initial idea: Convert each operand independently,
then multiply in the chunky representation.

But how to minimize the nasty cost measure?

Theorem

Any independent conversion algorithm must result in slower
multiplication than the dense or sparse method in some cases.
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Two-Step Chunky Conversion
First Step: Optimal Chunk Size

Suppose every chunk in both operands was forced to have the
same size k.

This simplifies the cost to t(k) · s(k) ·M(k),
where t(k) is the least number of size-k chunks to make f .

First conversion step:
Compute the optimal value of k to minimize this simplified cost
measure.
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Computing the optimal chunk size

Optimal chunk size computation algorithm:

1 Create two min-heaps with all “gaps” in f and g,
ordered on the size of resulting chunk if gap were removed.

2 Remove all gaps of smallest priority and update neighbors

3 Approximate t(k), s(k) by the size of the heaps,
and compute t(k) · s(k) ·M(k)

4 Repeat until no gaps remain.

With careful implementations, this can be made linear-time in
either the dense or sparse representation.
Constant factor approximation; ratio is 4.

Observe: We must compute the cost of dense multiplication!
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Two-Step Chunky Conversion
Second Step: Conversion given chunk size

After computing “optimal chunk size”, conversion proceeds
independently.

We compute the optimal chunky representation for multiplying
by a single size-k chunk.

Idea: For each gap, maintain a linked list of all previous gaps
to include if the polynomial were truncated here.

Algorithm: Increment through gaps, each time finding
the last gap that should be included.
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Conversion given optimal chunk size

The algorithm uses two key properties:

• Chunks larger than k bring no benefit.

• For smaller chunks, we want to minimize
∑

i

M(deg fi)
deg fi

.

Theorem

Our algorithm computes the optimal chunky representation
for multiplying by a single size-k chunk.

Its cost is linear in the dense or sparse representation size.
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Chunky Multiplication Overview

Input: f , g ∈ R[x], either in the sparse or dense representation
Output: Their product f · g, in the same representation

1 Compute approximation to “optimal chunk size” k,
looking at both f and g simultaneously.

2 Convert f to optimal chunky representation
for multiplying by a single size-k chunk.

3 Convert g to optimal chunky representation
for multiplying by a single size-k chunk.

4 Multiply pairwise chunks using dense multiplication.

5 Combine terms and write out the product.
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Second idea for Adaptive Multiplication

Example

• f = 3 − 2x3 + 7x6 + 5x12 − 6x15

• fD = 3 − 2x + 7x2 + 5x4 − 6x5

• f = fD ◦ x3

• g = gD ◦ x3

To multiply f · g, multiply fD · gD:

f · g = (fD · gD) ◦ x3
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Different Spacing

Example

• f = 4 + 6x2 + 9x4 − 7x6 − x8 + 3x10 − 2x12

••• g = 3 + 2x3 − x6 + 8x9 − 5x12

••• Computing f · g requires 6 multiplications fi · gj, no additions

• Note: f · g is almost totally dense.
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Example
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Equal-Spaced Multiplication

Theorem

Given f = fD ◦ xk, g = gD ◦ x`, and deg f , deg g < n,
can find f · g using

O
(

n
gcd(k, `)

M
(

n
lcm(k, `)

))
ring operations.
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Allowing Outliers

Consider f = 3 − 2x3 + 7x6 − 4x7 + 5x12 − 6x15.

• Can we handle almost-equal spaced polynomials?

Idea: Write f = xr · fD(xk) + fS, where fS is s-sparse.

If s ∈ O(log deg f ), the cost of equal-spaced multiplication will be
less than that of dense multiplication.
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Equal-Spaced Conversion

Write S = {e1, e2, . . . , et} for the exponents of nonzero terms in f .

Goal: Find the largest k such that all but lg n of the ei’s are
equivalent modulo k.

Problem: This is related to max-factor k-gcd, which is NP-hard.

• Eliminates linear-time optimal conversion from sparse.

• Is the problem easier for dense polynomials?
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Conversion from Dense

Theorem (Upper bound on k)

k ∈ O
(n

t

)
.

Idea: Perform a check for each possible k.

• Single check requires t modular computations.

• Can find majority element in O(t) by the algorithm of
(Boyer & Moore / Fischer & Salzburg).

• Total cost is O(tk), which is O(n).

So we can find the optimal k in linear time
in the size of the dense representation.
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Combining Chunky and Equal-Spaced

To avoid the need for converting from sparse to equal-spaced,
we can combine with chunky polynomials.

Chunks with Equal Spacing:

1 Convert dense or sparse input to chunky representation.

2 Simultaneously convert each dense chunk to equal-spaced,
using the same spacing parameter k for all chunks.

3 Multiplication now uses sparse multiplication on the outside,
equal-spaced in the middle, and dense on the inside.

Theorem

Multiplication using chunks with equal spacing as above is never
more costly than chunky or equal-spaced multiplication alone.
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Implementations in a Software Library

Our algorithms should be implemented and compared to existing
approaches.

Current software supporting polynomial arithmetic is either:

• Too big: Maple, Mathematica, Singular, Magma, etc.

• Too small: NTL, FLINT, zn poly

• Not open: sdmp, TRIP

The MVP (MultiVariate Polynomials) library will fill a niche:
An open-source library for high-performance computations with
sparse and dense polynomials.
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Dense multiplication in MVP
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Sparse multiplication in MVP
Degree 10 000
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Sparse multiplication in MVP
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Timings vs “Chunkiness”
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Timings without imposed chunkiness
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Multivariate Multiplication

We can apply our univariate algorithms to the multivariate case
with the Kronecker substitution:

Given multivariate polynomials f , g ∈ R[x1, x2, . . . , xn],
we compute degree bounds on the product: di > degxi

(fg),
then write

f̂ = f
(
x, xd1 , xd1d2 , . . . , xd1d2···dn−1

)
ĝ = g

(
x, xd1 , xd1d2 , . . . , xd1d2···dn−1

)
Computing the univariate product f̂ · ĝ then gives all the terms of
the actual multivariate product.
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Possible Applicability of Kronecker Substitution
Homogeneous Polynomials
• Every term in a homogeneous polynomial

has the same total degree.

• Example: f = 2xy4z + x2y4 − 2x3z3 + x4yz
• In the Kronecker substitution, this polynomial will be

equal-spaced.

Recursive Dense
• The recursive dense representation has shown to be

generally useful in computer algebra systems
(Stoutemyer 1984, Fateman 2003).

• A dense coefficient array in this representation corresponds to
a chunk with equal spacing under the Kronecker substitution.

Hence our adaptive representations may work well for “real” data.
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Better approximations and bounds

We can hope for better conversion algorithms:

• Chunky conversion steps are optimal, but
overall process might not be.

• Chunky/equal-spaced combination might be sub-optimal.

• Better constant-factor approximation

On a practical level, further tweaking might avoid inefficiencies,
especially at borderline cases.
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The Ultimate Goal?

Adaptive methods go between pseudo-linear-time dense
algorithms and quadratic-time sparse algorithms.

• Output size of sparse multiplication is at most quadratic.

• Can we have pseudo-linear output-sensitive cost?

Note: This is the best we can hope for and would generalize
chunky and equal-spaced.
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Connection to Sparse Interpolation

Problem: Sparse Polynomial Interpolation

Given a way to evaluate an unknown f ∈ R[x] at any point,
determine the terms in f .

Ben-Or & Tiwari (’88): Sparse interpolation algorithm
Kaltofen & Lee (’02): Early termination strategy

These results allow sparse multiplication in time O˜(t log2 d),
where t is sparsity of input plus output — almost what we want.

Extra O(log d) factor comes from root finding and discrete logs
— can these be avoided without increasing the cost?

Are multiplication and interpolation deeply linked?



Introduction Chunky Equal-Spaced Implementation Future Work

Connection to Sparse Interpolation

Problem: Sparse Polynomial Interpolation

Given a way to evaluate an unknown f ∈ R[x] at any point,
determine the terms in f .

Ben-Or & Tiwari (’88): Sparse interpolation algorithm
Kaltofen & Lee (’02): Early termination strategy

These results allow sparse multiplication in time O˜(t log2 d),
where t is sparsity of input plus output — almost what we want.

Extra O(log d) factor comes from root finding and discrete logs
— can these be avoided without increasing the cost?

Are multiplication and interpolation deeply linked?



Introduction Chunky Equal-Spaced Implementation Future Work

Summary

• Two ways to go between dense and sparse multiplication:
chunky and equal-spaced multiplication.

• These algorithms are never worse than existing approaches,
but can be much better in well-structured cases.

• The two ideas can be combined and also have some
promising applications and implementation results.

• Much work remains to understand this fundamental problem.
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Thank you!
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