Diversification Improves Interpolation

Mark Giesbrecht Daniel S. Roche

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

Symbolic Computation Group

ISSAC 2011 June 11, San Jose, California

Sparse Interpolation

The Problem

Given a black box for an unknown polynomial

$$f = c_1 x^{e_1} + c_2 x^{e_2} + \dots + c_t x^{e_t},$$

determine the coefficients c_i and exponents e_i .

We are interested in two cases:

- 1 Coefficients come from a large, unchosen finite field.
- 2 Coefficients are approximations to complex numbers.

We first consider univariate interpolation over finite fields.

Remainder Black Box

We will use the following black box model for univariate polynomials over a ring R:

This can be accomplished easily if f is given by an algebraic circuit, or by evaluating at roots of g (possibly over an extension of R).

Sparse interpolation algorithms over finite fields

Consider an unknown $f \in \mathbb{F}_q[x]$ with t terms and degree d. Assume $q \gg d$ does not have any special properties.

- Dense methods (Newton/Waring/Lagrange): O(d) total cost.
- de Prony's method
 (Ben-Or & Tiwari '88, Kaltofen & Lakshman '89):
 O(t) probes; computation requires O(t) discrete logarithms.
- Garg & Schost '09: O^{*}(t² log d) probes modulo degree-O^{*}(t² log d) polynomials; total cost O^{*}(t⁴ log² d).
- **Ours**: $O(\log d)$ probes modulo degree- $O(t^2 \log d)$ polynomials; total cost $O(t^2 \log^2 d)$.

Garg & Schost's Algorithm

Consider (unknown) $f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t}$.

Idea: Evaluate $f \mod x^p - 1$ for a small prime p. This gives $f_p = c_1 x^{e_1 \mod p} + c_2 x^{e_2 \mod p} + \cdots + c_t x^{e_t \mod p}$.

If p is "good", then every $e_i \mod p$ is distinct, and we have every coefficient and an unordered set $\{e_i \mod p \mid 1 \le i \le t\}$.

Problem: How to correlate terms between different evaluations?

Garg & Schost's Algorithm

Consider (unknown) $f = c_1 x^{e_1} + c_2 x^{e_2} + \cdots + c_t x^{e_t}$.

Idea: Evaluate $f \mod x^p - 1$ for a small prime p. This gives $f_p = c_1 x^{e_1 \mod p} + c_2 x^{e_2 \mod p} + \cdots + c_t x^{e_t \mod p}$.

If p is "good", then every $e_i \mod p$ is distinct, and we have every coefficient and an unordered set $\{e_i \mod p \mid 1 \le i \le t\}$.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the exponents: $\Gamma(z) = (z - e_1)(z - e_2) \cdots (z - e_t) \in \mathbb{Z}[z]$.

Coefficients of Γ have $\Theta(t \log d)$ bits, so we need this many "good prime" evaluations. Then we must find the integer roots of Γ .

(unknown)
$$f = 49x^{42} + 46x^{30} + 7x^{27} \in \mathbb{F}_{101}[x]$$

1 Evaluate f(x) modulo $x^p - 1$ for small p:

$$f(x) \bmod (x^7 - 1) = 7x^6 + 46x^2 + 49$$

$$f(x) \bmod (x^{11} - 1) = 49x^9 + 46x^8 + 7x^5$$

(unknown)
$$f = 49x^{42} + 46x^{30} + 7x^{27} \in \mathbb{F}_{101}[x]$$

1 Evaluate f(x) modulo $x^p - 1$ for small p:

$$f(x) \mod (x^7 - 1) = 7x^6 + 46x^2 + 49$$

 $f(x) \mod (x^{11} - 1) = 49x^9 + 46x^8 + 7x^5$

2 Correlate terms using coefficients, determine exponents with Chinese remaindering:

6 mod 7, 5 mod 11
$$\Rightarrow e_1 = 27$$

2 mod 7, 8 mod 11 $\Rightarrow e_2 = 30$
0 mod 7, 9 mod 11 $\Rightarrow e_3 = 42$

(**unknown**)
$$f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$$

1 Evaluate f(x) modulo $x^p - 1$ for small p:

$$f(x) \bmod (x^7 - 1) = 76x^6 + 76x^5 + 38x^3$$
$$f(x) \bmod (x^{11} - 1) = 38x^8 + 76x^7 + 76$$

(**unknown**)
$$f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$$

- **1** Choose random $\alpha \in \mathbb{F}_{101}$: $\alpha = 18$
- 2 Evaluate $f(\alpha x)$ modulo $x^p 1$ for small p:

$$f(\alpha x) \bmod (x^7 - 1) = 86x^6 + 47x^5 + 63x$$
$$f(\alpha x) \bmod (x^{11} - 1) = 47x^7 + 63x^6 + 86$$

(**unknown**)
$$f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$$

- **1** Choose random $\alpha \in \mathbb{F}_{101}$: $\alpha = 18$
- 2 Evaluate $f(\alpha x)$ modulo $x^p 1$ for small p:

$$f(\alpha x) \bmod (x^7 - 1) = 86x^6 + 47x^5 + 63x$$
$$f(\alpha x) \bmod (x^{11} - 1) = 47x^7 + 63x^6 + 86$$

3 Correlate terms using coefficients, determine exponents with Chinese remaindering:

6 mod 7, 0 mod 11
$$\Rightarrow e_1 = 55$$

5 mod 7, 7 mod 11 $\Rightarrow e_2 = 40$
1 mod 7, 6 mod 11 $\Rightarrow e_3 = 50$

(**unknown**)
$$f = 76x^{55} + 38x^{50} + 76x^{40} \in \mathbb{F}_{101}[x]$$

- **1** Choose random $\alpha \in \mathbb{F}_{101}$: $\alpha = 18$
- 2 Evaluate $f(\alpha x)$ modulo $x^p 1$ for small p:

$$f(\alpha x) \bmod (x^7 - 1) = 86x^6 + 47x^5 + 63x$$
$$f(\alpha x) \bmod (x^{11} - 1) = 47x^7 + 63x^6 + 86$$

3 Correlate terms using coefficients, determine exponents with Chinese remaindering:

6 mod 7, 0 mod 11
$$\Rightarrow e_1 = 55$$

5 mod 7, 7 mod 11 $\Rightarrow e_2 = 40$
1 mod 7, 6 mod 11 $\Rightarrow e_3 = 50$

4 Compute original coefficients of f(x):

$$c_1 = 86/\alpha^{55} = 76$$
, $c_2 = 47/\alpha^{40} = 76$, $c_3 = 63/\alpha^{50} = 38$

Diversification

- We call a polynomial with all coefficients distinct diverse.
- Diverse polynomials are easier to interpolate.
- We use randomization to create diversity.

Theorem

If $f \in \mathbb{F}_q[x]$, $q \gg t^2 \deg f$, and $\alpha \in \mathbb{F}_q$ is chosen randomly, then $f(\alpha x)$ is diverse with probability at least 1/2.

Interpolation over Finite Fields using Diversification

 $\text{Degree} \approx 1\,000\,000$

Interpolation over Finite Fields using Diversification

 $\text{Degree} \approx 16\,000\,000$

Interpolation over Finite Fields using Diversification

 $\text{Degree} \approx 4\,000\,000\,000$

Approximate Sparse Interpolation over $\mathbb{C}[x]$

- Related work: (G., Labahn, Lee '06, '09), (Kaltofen, Yang, Zhi '07), (Cuyt & Lee '08), (Kaltofen, Lee, Yang '11).
- Applications to homotopy methods (e.g., Sommese, Verschelde, Wampler '04).
- Known algorithms are fast but not provably stable.

Some numerical ingredients

We show that the sparse interpolation problem is well-posed for evaluations at low-order roots of unity:

Theorem

Suppose $f,g \in \mathbb{C}[x]$, p is a randomly-chosen "good prime", $\epsilon \in \mathbb{R}_{>0}$, and ω is a pth primitive root of unity.

If
$$|f(\omega^i) - g(\omega^i)| \le \epsilon |f(\omega^i)|$$
 for $0 \le i < p$, then $||f - g||_2 \le \epsilon ||f||_2$.

- To use Garg & Schost's method, we need $f \mod (x^p 1)$.
- We compute $f(\exp(2j\pi \mathbf{i}/p))$ for $0 \le j < p$ and then use the FFT.
- The relative error on $f \mod (x^p 1)$ is the same as the relative error of each evaluation.

(unknown)

$$f = (1.4 + 0.41\mathbf{i})x^{31} + (0.80 + 0.27\mathbf{i})x^{23} + (0.80 + 0.27\mathbf{i})x^7 \in \mathbb{C}[x]$$

(unknown)

$$f = (1.4 + 0.41\mathbf{i})x^{31} + (0.80 + 0.27\mathbf{i})x^{23} + (0.80 + 0.27\mathbf{i})x^7 \in \mathbb{C}[x]$$

1 Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, ..., s - 1\} \Rightarrow k = 5$, then set $\alpha = \exp(\pi \mathbf{i} k/s)$

(unknown)

$$f = (1.4 + 0.41\mathbf{i})x^{31} + (0.80 + 0.27\mathbf{i})x^{23} + (0.80 + 0.27\mathbf{i})x^7 \in \mathbb{C}[x]$$

- **1** Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, ..., s-1\} \Rightarrow k = 5$, then set $\alpha = \exp(\pi i k/s)$
- 2 Evaluate $f(\alpha x)$ modulo $x^p 1$ for small p using FFT:

$$f(\alpha x) \bmod (x^5 - 1) = (0.00 + .01\mathbf{i}) + (.94 + 1.09\mathbf{i})x + (.083 + .84\mathbf{i})x^2 + (-.84 - .035\mathbf{i})x^3 + (0.01 + 0.00\mathbf{i})x^4$$

$$f(\alpha x) \bmod (x^7 - 1) = (.085 + .84\mathbf{i}) + (-.01 + .003\mathbf{i})x + (-.84 - .035\mathbf{i})x^2 + (.94 + 1.08\mathbf{i})x^3 + (-.002 + .01\mathbf{i})x^4 + (.01 + 0.00\mathbf{i})x^5 + (0.00 - .002\mathbf{i})x^6$$

(unknown)

$$f = (1.4 + 0.41\mathbf{i}) x^{31} + (0.80 + 0.27\mathbf{i}) x^{23} + (0.80 + 0.27\mathbf{i}) x^7 \in \mathbb{C}[x]$$

- **1** Choose $s \in \Omega(t^2) \Rightarrow s = 11$, random $k \in \{0, \dots, s-1\} \Rightarrow k = 5$, then set $\alpha = \exp(\pi i k/s)$
- 2 Evaluate $f(\alpha x)$ modulo $x^p 1$ for small p using FFT:

$$f(\alpha x) \bmod (x^5 - 1) = (0.00 + .01\mathbf{i}) + (.94 + 1.09\mathbf{i})x + (.083 + .84\mathbf{i})x^2 + (-.84 - .035\mathbf{i})x^3 + (0.01 + 0.00\mathbf{i})x^4$$

$$f(\alpha x) \bmod (x^7 - 1) = (.085 + .84\mathbf{i}) + (-.01 + .003\mathbf{i})x + (-.84 - .035\mathbf{i})x^2 + (.94 + 1.08\mathbf{i})x^3 + (-.002 + .01\mathbf{i})x^4 + (.01 + 0.00\mathbf{i})x^5 + (0.00 - .002\mathbf{i})x^6$$

- 3 Correlate terms with close coefficients, determine exponents with Chinese remaindering
- 4 Compute original coefficients of f(x)

Approximate interpolation algorithm

Theorem

Let $f \in \mathbb{C}[x]$ with t terms and sufficiently large coefficients, $s \gg t^2$, and ω an s-PRU.

Then for a random $k \in \{0, 1, ..., s-1\}$, $f(\omega^k x)$ has sufficiently separated coefficients (i.e., numerical diversity).

Cost: $O(t^2 \log^2 \deg f)$ evaluations at low-order roots of unity and floating point operations.

Experimental stability (degree 1 000 000, 50 nonzero terms):

Noise	Mean Error	Median Error	Max Error
0	4.440 e−16	4.402 e-16	8.003 e-16
$\pm 10^{-12}$	1.113 e-14	1.119e-14	1.179 e−14
$\pm 10^{-9}$	1.149e - 11	1.191 e-11	1.248 e-11
$\pm 10^{-6}$	1.145e - 8	1.149e - 8	1.281 e-8

Extension to multivariate

Let $f \in R[x_1, x_2, ..., x_n]$ with t terms and max degree d - 1.

Two techniques for extending a univariate sparse interpolation algorithm to multivariate (Kaltofen & Lee '03):

Kronecker substitution. Create a black box for the univariate polynomial $\hat{f} = f(x, x^d, x^{d^2}, \dots, x^{d^{n-1}})$, then interpolate \hat{f} . Cost of our algorithm: $O(n^2t^2\log^2d)$.

Zippel's method. Go variable-by-variable; at each of n steps perform univariate interpolation t times on degree-d polynomials. Cost of our algorithm: $O(nt^3 \log^2 d)$.

Future directions

Our algorithms perform more evaluations (probes) than O(t), but do these at low-order roots of unity.

By randomized diversification, we avoid discrete logarithms and integer polynomial factorization.

Questions:

- Are discrete logarithms required to perform sparse interpolation using O(t) evaluations over any finite field?
- Is there a trade-off between number of probes and computation cost/numerical stability?
- Can we weaken the diversification requirements (e.g., allow some collisions)?