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Sparse Interpolation

The Problem
Given a black box for an unknown polynomial

f=c1x +cx® + -+ ex”,

determine the coefficients ¢; and exponents e;.

We are interested in two cases:
© Coefficients come from a large, unchosen finite field.
® Coefficients are approximations to complex numbers.
We first consider univariate interpolation over finite fields.
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Remainder Black Box

We will use the following black box model
for univariate polynomials over a ring R:

The “Remainder Black Box”

monic, square-free

f € Rlx]

The cost of the evaluation is O(M(deg g)).

This can be accomplished easily if f is given by an algebraic circuit,
or by evaluating at roots of g (possibly over an extension of R).
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Sparse interpolation algorithms over finite fields

Consider an unknown f € F,[x] with 7 terms and degree d.
Assume ¢ > d does not have any special properties.

¢ Dense methods (Newton/Waring/Lagrange): O(d) total cost.

e de Prony’s method
(Ben-Or & Tiwari ‘88, Kaltofen & Lakshman ’89):
O(t) probes; computation requires O(¢) discrete logarithms.

o Garg & Schost ’09: O7(#? log d) probes modulo
degree-07(1* log d) polynomials; total cost O7(t* log? d).

« Ours: O(log d) probes modulo degree-O7(r* log d)
polynomials; total cost O7(r? log? d).
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Garg & Schost’s Algorithm

Consider (unknown) f = c1x°' + cpx2 + - - - + ¢;x°.

Idea: Evaluate f mod x” — 1 for a small prime p.

This gives f, = ¢ x¢1 MO4P 4 cpxe2modp ..y ¢y modp,

If pis “good”, then every e¢; mod p is distinct, and we have every
coefficient and an unordered set{e; mod p | 1 <i < t}.

Problem: How to correlate terms between different evaluations?
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Garg & Schost’s Algorithm

Consider (unknown) f = c1x°' + ¢px® + -+ - + cx“.

Idea: Evaluate f mod x” — 1 for a small prime p.

This gives f, = ¢ x¢1 M4P 4 cpxe2 MdP .. 4 ¢ xermodp,

If p is “good”, then every ¢; mod p is distinct, and we have every
coefficient and an unordered set{e; mod p | 1 <i < t}.

Problem: How to correlate terms between different evaluations?

Consider the symmetric polynomial whose roots are the
exponents: I'(z) = (z —e1)(z—e2) -~ (2 — e;) € Z[z].

Coefficients of I have ®(¢log d) bits, so we need this many “good
prime” evaluations. Then we must find the integer roots of I'.



Example 1 over R = Fyg,
(unknown) f = 49x* + 46x°° + 7x?7 € Fyo;[x]
@ Evaluate f(x) modulo ¥’ — 1 for small p:

F) mod (x7 — 1) = 745 + 46x* + 49
f) mod (x'' = 1) = 49x° + 462 + 7x°
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Example 1 over R = Fyg,
(unknown) f = 49x* + 46x°° + 7x?7 € Fyo;[x]
@ Evaluate f(x) modulo ¥’ — 1 for small p:
F) mod (x7 — 1) = 745 + 46x* + 49
f) mod (x'' = 1) = 49x° + 462 + 7x°

® Correlate terms using coefficients,
determine exponents with Chinese remaindering:
6mod7, Smod 1l = e =27
2mod7, 8mod 11 = e; =30
Omod7, 9mod 11 = e3 =42



Example 2 over R = Fy,
(unknown) f = 76x> + 38x°° + 76x* € Fy1[x]
© Evaluate f(x) modulo x” — 1 for small p:

f) mod (x7 — 1) = 76x° + 76x° + 38x°
Fx) mod (x'' = 1) = 38x® + 76x" + 76



Example 2 over R = Fy,
(unknown) f = 76x> + 38x°" + 76x*° € Fyo;[x]

© Choose random a € Fjp;: @ = 18
® Evaluate f(ax) modulo x” — 1 for small p:

f(ax) mod (x” — 1) = 86x° + 47x° + 63x
f(ax) mod (x'" — 1) = 47x" + 63x° + 86
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Example 2 over R = Fy,
(unknown) f = 76x> + 38x°" + 76x*° € Fyo;[x]

© Choose random a € Fig1: o = 18
® Evaluate f(ax) modulo x” — 1 for small p:
f(ax) mod (x” — 1) = 86x° + 47x° + 63x
f(ax) mod (x'" — 1) = 47x" + 63x° + 86
® Correlate terms using coefficients,
determine exponents with Chinese remaindering:
6mod7, Omod 11 = e; =55
S5mod7, 7mod 11 = e; =40
I mod7, 6 mod 11 = ez =50
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Example 2 over R = Fy,
(unknown) f = 76x> + 38x°" + 76x*° € Fyo;[x]

© Choose random a € Fig1: o = 18
® Evaluate f(ax) modulo x” — 1 for small p:
f(ax) mod (x” — 1) = 86x° + 47x° + 63x
f(ax) mod (x'" — 1) = 47x" + 63x° + 86

® Correlate terms using coefficients,
determine exponents with Chinese remaindering:

6mod7, Omod 11 = e; =55
S5mod7, 7mod 11 = e; =40
I mod7, 6 mod 11 = ez =50

@ Compute original coefficients of f(x) :
c1 =86/a> =76, 3 =47/a* =76,  c¢3=63/a =38
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Diversification

e We call a polynomial with all coefficients distinct diverse.
e Diverse polynomials are easier to interpolate.
¢ We use randomization to create diversity.

Theorem

Iff € Fylx], ¢ > 1> degf, and « € F, is chosen randomly,
then f(ax) is diverse with probability at least 1/2.
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Approximate Sparse Interpolation over C[x]

Approximate Black Box

leC I e-error approximation
to f({)

f €Clxl
e € Ry

o Related work: (G., Labahn, Lee ’06, '09), (Kaltofen, Yang, Zhi
'07), (Cuyt & Lee '08), (Kaltofen, Lee, Yang '11).

o Applications to homotopy methods
(e.g., Sommese, Verschelde, Wampler '04).

e Known algorithms are fast but not provably stable.
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Some numerical ingredients

We show that the sparse interpolation problem is well-posed for
evaluations at low-order roots of unity:

Theorem

Suppose f, g € Clx], p is a randomly-chosen “good prime”, € € R,
and w is a pth primitive root of unity.

If [f () — g()| < €|f(w))| for0 < i < p, then||f — gll, < € IIfll,.

e To use Garg & Schost’s method, we need f mod (x” — 1).
o We compute f(exp(2jri/p)) for 0 < j < p and then use the FFT.

e The relative error on f mod (x” — 1) is the same as the relative
error of each evaluation.



Approximate Complex

Example 3 over C
(unknown)
f=(1.4+041) x> +(0.80 + 0.27i) x> + (0.80 + 0.27i) x’ € C[x]
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Example 3 over C
(unknown)
f=(1.4+041) x> +(0.80 + 0.27i) x> + (0.80 + 0.27i) x’ € C[x]

@ Choose s € Q(*) = s=11,randomk e {0,...,s— 1} > k=5,
then set a = exp(rmik/s)
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Example 3 over C
(unknown)
f=(1.4+041) x> +(0.80 + 0.27i) x> + (0.80 + 0.27i) x’ € C[x]

© Choose s € Q(?) = s=11,randomk e {0,...,s— 1} =k =5,
then set a = exp(rmik/s)
® Evaluate f(ax) modulo x” — 1 for small p using FFT:

f(ax) mod (x> — 1) = (0.00 + .01i) + (.94 + 1.090)x + (.083 + .84i)x’
+ (—.84 — .035i)x> + (0.01 + 0.00i)x*

f(ax) mod (x” — 1) = (085 + .84i) + (—.01 + .003i)x + (—.84 — .035i)x?
+ (.94 + 1.08)x> + (-.002 + .01i)x*
+ (.01 + 0.00i)x° + (0.00 — .002i)x®
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Example 3 over C
(unknown)
f=(1.4+041) x> +(0.80 + 0.27i) x> + (0.80 + 0.27i) x’ € C[x]

© Choose s € Q(?) = s=11,randomk e {0,...,s— 1} =k =5,
then set a = exp(rmik/s)
® Evaluate f(ax) modulo x” — 1 for small p using FFT:

f(ax) mod (x> — 1) = (0.00 + .01i) + (.94 + 1.090)x + (.083 + .84i)x’
+ (—.84 — .035i)x> + (0.01 + 0.00i)x*

f(ax) mod (x” — 1) = (085 + .84i) + (—.01 + .003i)x + (—.84 — .035i)x?
+ (.94 + 1.08)x> + (-.002 + .01i)x*
+ (.01 + 0.00i)x° + (0.00 — .002i)x®

® Correlate terms with close coefficients, determine exponents
with Chinese remaindering

@ Compute original coefficients of f(x)
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Approximate interpolation algorithm

Theorem

Let f € C[x] with t terms and sufficiently large coefficients,
s> 2, and w an s-PRU.

Then for arandom k € {0, 1,...,s — 1}, f(w¥x) has
sufficiently separated coefficients (i.e., numerical diversity).

Cost: O7(* log? degf) evaluations at low-order roots of unity and
floating point operations.

Experimental stability (degree 1 000 000, 50 nonzero terms):

Noise Mean Error Median Error Max Error
0 4.440e-16 4.402e-16 8.003e-16
+10712 1.113e-14 1.119e-14 1.179e-14
+1077 1.149e-11 1.191e-11 1.248e-11

+1076 1.145e-8 1.149e-8 1.281e-8
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Extension to multivariate

Let f € R[x,x2,...,x,] with  terms and max degree d — 1.

Two techniques for extending a univariate sparse interpolation
algorithm to multivariate (Kaltofen & Lee '03):

Kronecker substitution. Create a black box for the univariate
polynomial f = f(x,x,x*,...,x?""), then interpolate 7.
Cost of our algorithm: O(n2#2 log? d).

Zippel’'s method. Go variable-by-variable; at each of n steps
perform univariate interpolation ¢ times on degree-d polynomials.
Cost of our algorithm: O(n> log? d).



Background Finite Fields Approximate Complex Multivariate and beyond

Future directions

Our algorithms perform more evaluations (probes) than O(r),
but do these at low-order roots of unity.

By randomized diversification, we avoid discrete logarithms and
integer polynomial factorization.

Questions:

o Are discrete logarithms required to perform sparse
interpolation using O(r) evaluations over any finite field?

¢ |s there a trade-off between number of probes and
computation cost/numerical stability?

e Can we weaken the diversification requirements
(e.g., allow some collisions)?
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