1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | #!/usr/bin/python3 # SI 335: Computer Algorithms # Unit 3 import random def leastPrimeFactor(n): '''Given a positive integer n, returns the smallest prime number p which divides n''' i = 2 while i * i <= n: if n % i == 0: return i i = i + 1 # If we get here, n must be a prime number itself. return n def gcd(a, b): if b == 0: return a else: return gcd(b, a % b) def gcditer(a, b): while b != 0: (a, b) = (b, a % b) return a def xgcd(a, b): if b == 0: return (a, 1, 0) else: q, r = divmod(a, b) (g, s0, t0) = xgcd(b, r) return (g, t0, s0 - t0*q) def probably_prime(n): # This function returns a random integer from 2 up to n-2. a = random.randrange(2, n-1) d = n-1 k = 0 while d % 2 == 0: d = d // 2 k = k + 1 # IMPORTANT: This next line should be done more efficiently!! x = a**d % n # ** is the exponentiation operator if x**2 % n == 1: return True for r in range(1, k): x = x**2 % n if x == 1: return False if x == n-1: return True return False # The rest is just to do some "sanity checks" for myself. primes = {863, 1783, 2801, 5431, 14321, 45053, 7, 19387, 2351} compos = {196, 1306, 3423, 6160, 10983, 5860, 61273, 56058, 87201} def lpftest(alg): for p in primes: if alg(p) != p: print("Prime FAIL for", p) return False for n in compos: k = alg(n) if k <= 1 or k >= n or n%k != 0: print("Composite FAIL for", n) return False return True def prtest(alg): for p in primes: if not alg(p): print("MR FAIL for prime", p) return False for n in compos: if alg(n): print("MR FAIL for composite", n) return False return True def gcdtest(alg): for i in range(1000): a, b, c = (random.randrange(10**5) for i in range(3)) x, y = a*c, b*c g = alg(x, y) if g < 1 or g%c != 0 or x%g != 0 or y%g != 0: print("gcd FAIL for {} on x={} and y={}".format(alg.__name__,x,y)) return False if alg(x//g, y//g) != 1: print("gcd FAIL2 for {} on x={} and y={}".format(alg.__name__,x,y)) return False return True def xgcdtest(alg): for i in range(1000): a, b, c = (random.randrange(10**5) for i in range(3)) x, y = a*c, b*c g, s, t = alg(x, y) if g != gcd(x, y): print("{} FAIL wrong gcd for x={}, y={}".format(alg.__name__,x,y)) return False if s*x + t*y != g or abs(s) > y or abs(t) > x: print("{} FAIL wrong s,t for x={}, y={}".format(alg.__name__,x,y)) return False return True if __name__ == '__main__': tests = [ (lpftest, leastPrimeFactor), (gcdtest, gcd), (gcdtest, gcditer), (xgcdtest, xgcd), (prtest, probably_prime), ] allGood = True for tester, alg in tests: allGood = allGood and tester(alg) if allGood: print("All {} checks passed!".format(len(tests))) exit(0) else: exit(1) |