1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | #!/usr/bin/python3 import random import sys import queue import copy from showmaze import mazeref, inbounds ncoins = 10 def makeEmpty(h, w): '''Creates an empty h by w maze''' rows = [] rows.append([True] * (w+2)) rows.append([False] * (w+1) + [True]) for i in range(h-2): rows.append([True] + [False]*w + [True]) rows.append([True] + [False]*(w+1)) rows.append([True] * (w+2)) return rows def coinlocs(h, w): global ncoins cs = set() while len(cs) < ncoins: cs.add( (random.randrange(1, h+1), random.randrange(1, w+1)) ) return cs def below(pos): return (pos[0]+1, pos[1]) def above(pos): return (pos[0]-1, pos[1]) def leftof(pos): return (pos[0], pos[1]-1) def rightof(pos): return (pos[0], pos[1]+1) def neighbors(pos): return (below(pos), above(pos), leftof(pos), rightof(pos)) def dist(pos1, pos2): return abs(pos1[0] - pos2[0]) + abs(pos1[1] - pos2[1]) def connected(sofar, pos): for np in neighbors(pos): if np in sofar: return True return False def reachable(maze, start, dests): mr = copy.deepcopy(maze) mr[len(maze)-2][len(maze[0])-1] = True ur = set(dests) fr = [start] while fr: p = fr.pop() if inbounds(mr,p) and not mazeref(mr,p): ur.discard(p) mr[p[0]][p[1]] = True fr.extend(neighbors(p)) return not bool(ur) def fillReachable(h, w, param): maze = makeEmpty(h, w) coins = coinlocs(h,w) start = (1,0) end = (h, w+1) need = set(coins) need.add((h,w)) assert mazeref(maze,start) is False assert mazeref(maze,end) is False for i in range(round(h*w*param)): y = random.randrange(1, h+1) x = random.randrange(1, w+1) if not maze[y][x]: maze[y][x] = True if not reachable(maze, start, need): # undo maze[y][x] = False return maze, coins def fillFromPath(h, w, param): global ncoins maze = makeEmpty(h, w) end = (h, w+1) coins = coinlocs(h,w) stops = list(coins) stops.append((h,w)) path = [(1,0), (1,1)] for stop in stops: cury, curx = path[-1] while (cury,curx) != stop: ydif = stop[0] - cury xdif = stop[1] - curx if random.random() < abs(ydif) / (abs(ydif) + abs(xdif)): if ydif < 0: cury -= 1 else: cury += 1 else: if xdif < 0: curx -= 1 else: curx += 1 path.append( (cury,curx) ) ps = set(path) for i in range(round((h*w - len(path)+2)*param)): y = random.randrange(1, h+1) x = random.randrange(1, w+1) if (y,x) not in ps: if (y,x) == (1,1): print("WTF") maze[y][x] = True return maze, coins def rPrims(h, w, param): global ncoins maze = makeEmpty(h, w) # divide into cells for i in range(2, h, 2): for j in range(1, w+1): maze[i][j] = True for j in range(2, w, 2): for i in range(1, h+1): maze[i][j] = True included = set() q = queue.PriorityQueue() def addNeighbors(pos): nonlocal q, maze, included for direction in (above, below, rightof, leftof): wp = direction(pos) if not mazeref(maze, wp): continue other = direction(wp) if not inbounds(maze, other): continue if other in included: continue q.put((random.uniform(0,1), wp, other)) # choose random starting point y = random.randrange(1, h+1, 2) x = random.randrange(1, w+1, 2) included.add((y,x)) addNeighbors((y,x)) while not q.empty(): (pri, (wy,wx), opp) = q.get() if opp in included: continue included.add(opp) maze[wy][wx] = False addNeighbors(opp) # randomly remove some walls s = 1/8 scale = (1-param)*s/(s+param) for i in range(round(scale*h*w)): y = random.randrange(1, h+1) x = random.randrange(1, w+1) maze[y][x] = False # place coins coins = set() while len(coins) < ncoins: coins.add( (random.randrange(1,h+1,2), random.randrange(1,w+1,2)) ) return maze, coins def makeCharMaze(maze, coins): mz = [['X' if entry else ' ' for entry in row] for row in maze] for c in coins: mz[c[0]][c[1]] = 'O' return mz def addPrizes(maze, nprizes): h, w = len(maze)-2, len(maze[0])-2 while nprizes > 0: y = random.randrange(1,h+1) x = random.randrange(1,w+1) if maze[y][x] == ' ': maze[y][x] = 'O' nprizes -= 1 def printMaze(maze): for row in maze: print(''.join(row)) genmeths = { 'fillFromPath': 'Creates a path and then fills in around it', 'fillReachable': "Adds obstacles that don't prevent reaching the finish (slow)", 'rPrims': "Creates a traditional-looking maze using Prim's MST algorithm" } defmeth = 'rPrims' def usage(exitval=0): print("Usage: {} height width [method] [param]".format(sys.argv[0])) print("method (optional) is one of:") for (meth, desc) in genmeths.items(): df = " (default)" if meth == defmeth else "" print(" {}{}: {}".format(meth, df, desc)) print('param (optional) indicates how "dense" the output will be.') exit(exitval) if __name__ == '__main__': if not 3 <= len(sys.argv) <= 5: usage(1) h = int(sys.argv[1]) w = int(sys.argv[2]) method = defmeth if len(sys.argv) <= 3 else sys.argv[3] param = 0.5 if len(sys.argv) <= 4 else float(sys.argv[4]) if method not in genmeths: print("Invalid method number") usage(2) genfunc = globals()[method] maze, coins = genfunc(h, w, param) cm = makeCharMaze(maze, coins) # addPrizes(cm, 10) printMaze(cm) |