1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#!/usr/bin/python3
 
# SI 335: Computer Algorithms
# Unit 6
 
import sys
from heapq import heappush, heappop
from random import randrange
from copy import copy
 
infinity = float('inf')
 
class Graph:
    '''An abstract base class for graphs.
       These are all the methods that would have to be implemented.
       Here it's just an empty graph.'''
    m = 0
    n = 0
    
    def nodes(self):
        return []
 
    def edges(self):
        E = []
        for u in self.nodes():
            for (v,w) in self.edgesFrom(u):
                E.append((u,v,w))
        return E
 
    def isEdge(self, u, v):
        return (self.edgeWeight(u, v) < infinity)
 
    def edgeWeight(self, u, v):
        return infinity
 
    def edgesFrom(self, u):
        return []
 
 
class ALGraph(Graph):
    '''Adjacency list representation of a graph'''
 
    def __init__(self, vertices, edges):
        self.n = len(vertices)
        self.m = len(edges)
        self.V = vertices
        
        # self.AL is the actual adjacency list, initialized to all empty.
        self.AL = {}
        for u in self.V:
            self.AL[u] = []
 
        # add each edge to the proper adjacency list
        for (u,v,w) in edges:
            self.AL[u].append((v,w))
 
    def nodes(self):
        return self.V
 
    def edgeWeight(self, u, v):
        for (other, w) in self.AL[u]:
            if other == v:
                return w
        return infinity
 
    def edgesFrom(self, u):
        return self.AL[u]
 
 
class AMGraph(Graph):
    '''Adjacency matrix representation of a graph'''
 
    def __init__(self, vertices, edges):
        self.n = len(vertices)
        self.m = len(edges)
        self.V = list(vertices)
 
        # lookup table for the vertices
        self.vertind = {}
        i = 0
        for u in self.V:
            self.vertind[u] = i
            i += 1
        
        # self.AM is the actual adjacency matrix, initialized to 0 and infinity
        self.AM = []
        for i in range(self.n):
            self.AM.append([infinity] * self.n)
            self.AM[i][i] = 0
 
        # add each edge weight to the matrix
        for (u,v,w) in edges:
            self.AM[self.vertind[u]][self.vertind[v]] = w
 
    def nodes(self):
        return self.V
 
    def edgeWeight(self, u, v):
        return self.AM[self.vertind[u]][self.vertind[v]]
 
    def edgesFrom(self, u):
        L = []
        uind = self.vertind[u]
        for i in range(self.n):
            w = self.AM[uind][i]
            if w < infinity:
                L.append((self.V[i], w))
        return L
 
 
def DFS(G, start, end):
    colors = {}
    for u in G.V:
        colors[u] = "white"
    fringe = [(start, 0)]
    while len(fringe) > 0:
        (u, w1) = fringe[-1] # end of the list
        #print("DFS",fringe,colors[u])
        if colors[u] == "white":
            if u == end:
                return w1
            colors[u] = "gray"
            for (v, w2) in G.edgesFrom(u):
                if colors[v] == "white":
                    fringe.append((v, w1+w2))
        elif colors[u] == "gray":
            colors[u] = "black"
        else:
            fringe.remove((u, w1))
 
def BFS(G, start, end):
    colors = {}
    for u in G.V:
        colors[u] = "white"
    fringe = [(start, 0)]
    while len(fringe) > 0:
        (u, w1) = fringe[0] # the only difference from DFS!
        #print("BFS",fringe,colors[u])
        if colors[u] == "white":
            if u == end:
                return w1
            colors[u] = "gray"
            for (v,w2) in G.edgesFrom(u):
                if colors[v] == "white":
                    fringe.append((v, w1+w2))
        elif colors[u] == "gray":
            colors[u] = "black"
        else:
            fringe.remove((u, w1))
 
def linearize(G):
    '''Returns an ordering of the vertices in the DAG G that have
       no backward edges.'''
    order = []
    colors = {}
    fringe = []
    for u in G.V:
        colors[u] = "white"
        fringe.append(u)
    while len(fringe) > 0:
        u = fringe[-1]
        if colors[u] == "white":
            colors[u] = "gray"
            for (v,w2) in G.edgesFrom(u):
                if colors[v] == "white":
                    fringe.append(v)
        elif colors[u] == "gray":
            colors[u] = "black"
            order.insert(0, u)
        else:
            fringe.pop()
    return order
 
def dijkstraHeap(G, start):
    '''A dictionary of shortest path lengths from start in G is returned.'''
    shortest = {}
    colors = {}
    for u in G.V:
        colors[u] = "white"
    fringe = [(0, start)] # Note: the weight must come first for the order.
    while len(fringe) > 0:
        (w1, u) = heappop(fringe)
        if colors[u] == "white":
            colors[u] = "black"
            shortest[u] = w1
            for (v, w2) in G.edgesFrom(u):
                heappush(fringe, (w1+w2, v))
    return shortest
 
def dijkstraArray(G, start):
    '''A dictionary of shortest path lengths from start in G is returned.'''
    shortest = {}
    fringe = {}
    for u in G.V:
        fringe[u] = infinity
    fringe[start] = 0
    while len(fringe) > 0:
        w1 = min(fringe.values())
        for u in fringe:
            if fringe[u] == w1:
                break
        del fringe[u]
        shortest[u] = w1
        for (v, w2) in G.edgesFrom(u):
            if v in fringe:
                fringe[v] = min(fringe[v], w1+w2)
    return shortest
 
 
def recShortest(AM, i, j, k):
    '''Calculates the shortest path from node numbered i to
       node numbered j, using adjacency matrix AM, not going
       through any node higher than k'''
    if k == -1:
        return AM[i][j]
    else:
        option1 = recShortest(AM, i, j, k-1)
        option2 = recShortest(AM, i, k, k-1) + recShortest(AM, k, j, k-1)
        return min(option1, option2)
 
def FloydWarshall(AM):
    '''Calculates EVERY shortest path length between any two vertices
       in the original adjacency matrix graph.'''
    L = copy(AM)
    n = len(AM)
    for k in range(0, n):
        for i in range(0, n):
            for j in range(0, n):
                L[i][j] = min(L[i][j], L[i][k] + L[k][j])
    return L
 
def approxVC(G):
    C = set() # makes an empty set
    for (u,v,w) in G.edges():
        if u not in C and v not in C:
            C.add(u)
            C.add(v)
    return C
 
 
# The rest is just for testing/debugging purposes.
 
# Specifications of my example graphs
def weighted(E):
    '''Makes a weighted from an unweighted graph'''
    return tuple(sorted((u,v,1) for (u,v) in E))
 
def directed(E):
    '''Makes directed from an undirectd graph'''
    Eset = set(E)
    for (u,v,w) in E:
        Eset.add((v,u,w))
    return tuple(sorted(Eset))
 
def fromE(E):
    '''Determines vertices from edges'''
    Vset = set()
    for (u,v,w) in E:
        Vset.add(u)
        Vset.add(v)
    return tuple(sorted(Vset)), E
 
a,b,c,d,e,f,g,h,i,j,k,l,m = (chr(let) for let in range(ord('a'), ord('n')))
 
dag1 = fromE(weighted(
    ((b,c), (b,a), (c,a), (c,e), (c,d), (a,d), (e,d))
))
 
ex1 = fromE(
    ((a,c,10), (a,d,22), (b,c,53), (b,e,45), (c,a,21), (c,e,33), (e,d,19))
)
 
ex2 = fromE(directed(
    ((a,b,6), (a,c,6), (a,d,3), (b,d,2), (b,e,4), (c,d,5), (c,e,1), (d,e,4))
))
 
ex3 = fromE(directed(
    ((a,c,1), (c,d,6), (b,e,1), (c,f,4), (a,f,6), (b,f,2), (c,e,5), 
     (e,d,2), (b,c,1))
))
 
match1 = fromE(directed(weighted(
    ((l,h), (h,d), (d,a), (a,b), (c,f), (f,e), (e,i), (j,m), (g,k), (j,e), (j,i),
     (g,f), (a,h), (d,b), (b,e), (l,m), (h,i), (c,b), (k,f), (m,k), (j,f), (d,i),
     (i,m))
)))
 
 
if __name__ == '__main__':
    BFS(ALGraph(*ex1),b,d)
    DFS(AMGraph(*ex1),a,b)
    
    assert linearize(ALGraph(*dag1)) == [b,c,a,e,d]
    assert linearize(AMGraph(*dag1)) == [b,c,a,e,d]
 
    assert dijkstraArray(ALGraph(*ex2), a) == {a:0, b:5, c:6, d:3, e:7}
    assert dijkstraHeap(ALGraph(*ex2), a) == {a:0, b:5, c:6, d:3, e:7}
    assert dijkstraArray(AMGraph(*ex2), a) == {a:0, b:5, c:6, d:3, e:7}
    assert dijkstraHeap(AMGraph(*ex2), a) == {a:0, b:5, c:6, d:3, e:7}
 
    ex2am = AMGraph(*ex2).AM
    assert recShortest(ex2am, 0, 1, 2) == 6
    assert recShortest(ex2am, 0, 1, 3) == 5
 
    L = FloydWarshall(ex2am)
    assert L[0][1] == 5
    assert L[0][4] == 7
    assert L[2][1] == 5
 
    print("All checks passed!")
 
del a,b,c,d,e,f,g,h,i,j,k,l,m