1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | #!/usr/bin/python3 # SI 335: Computer Algorithms # Unit 5 import sys from heapq import heapify, heappop from random import randrange from copy import copy from unit2 import swap, randomArray, sortTest, mergeSort from unit4 import toDigits, fromDigits def selectBySort(A, k): mergeSort(A) return A[k] def selectByHeap(A, k): H = copy(A) heapify(H) for i in range(0, k): heappop(H) return H[0] def partition(A): '''Partitions A according to A[0]. A[0] is used as the pivot, and the final index where A[0] ends up (p) is returned.''' n = len(A) i, j = 1, n-1 while i <= j: if A[i] <= A[0]: i = i + 1 elif A[j] > A[0]: j = j - 1 else: swap(A, i, j) swap(A, 0, j) return j def choosePivot1(A): return 0 def quickSelect1(A, k): '''Returns the k'th smallest element, counting from k=0''' n = len(A) swap(A, 0, choosePivot1(A)) p = partition(A) if p == k: return A[p] elif p < k: return quickSelect1(A[p+1 : n], k-p-1) elif p > k: return quickSelect1(A[0 : p], k) def shuffle(A): n = len(A) for i in range(0, n): swap(A, i, randrange(i, n)) def randomSelect(A, k): shuffle(A) return quickSelect1(A, k) def choosePivot2(A): # This returns a random number from 0 up to n-1 return randrange(0, len(A)) def quickSelect2(A, k): '''Returns the k'th smallest element, counting from k=0''' n = len(A) swap(A, 0, choosePivot2(A)) p = partition(A) if p == k: return A[p] elif p < k: return quickSelect2(A[p+1 : n], k-p-1) elif p > k: return quickSelect2(A[0 : p], k) def choosePivot3(A, q=5): '''This is the median of medians algorithm. q is a parameter that affects the complexity; can be any value greater than or equal to 2.''' n = len(A) m = n // q if m <= 1: # base case return n // 2 medians = [] for i in range(0, m): # Find median of each group medians.append(quickSelect3(A[i*q : (i+1)*q], q//2)) # Find the median of medians mom = quickSelect3(medians, m//2) for i in range(0, n): if A[i] == mom: return i def quickSelect3(A, k): '''Returns the k'th smallest element, counting from k=0''' n = len(A) swap(A, 0, choosePivot3(A)) p = partition(A) if p == k: return A[p] elif p < k: return quickSelect3(A[p+1 : n], k-p-1) elif p > k: return quickSelect3(A[0 : p], k) def quickSort1(A): n = len(A) if n > 1: swap(A, 0, choosePivot1(A)) p = partition(A) A[0 : p] = quickSort1(A[0 : p]) A[p+1 : n] = quickSort1(A[p+1 : n]) return A def quickSort2(A): n = len(A) if n > 1: swap(A, 0, choosePivot2(A)) p = partition(A) A[0 : p] = quickSort2(A[0 : p]) A[p+1 : n] = quickSort2(A[p+1 : n]) return A def quickSort3(A): n = len(A) if n > 1: swap(A, 0, choosePivot3(A)) p = partition(A) A[0 : p] = quickSort3(A[0 : p]) A[p+1 : n] = quickSort3(A[p+1 : n]) return A def countingSort(A, k=None, value = lambda x: x): '''value is a function that coverts the elements of a into integer values from 0 up to k-1.''' if k is None: # Automatically determine k if it's not given. k = 0 for x in A: k = max(k, value(x+1)) C = [0] * k # size-k array filled with 0's for x in A: C[value(x)] = C[value(x)] + 1 # Now C has the counts. # P will hold the positions. P = [0] for i in range(1, k): P.append(P[i-1] + C[i-1]) # Now copy everything into its proper position. for x in copy(A): A[P[value(x)]] = x P[value(x)] = P[value(x)] + 1 return A def ithDigit(i, N): try: return N[i] except IndexError: return 0 def radixSort(A, d, B): for i in range(0, d): # counting-sort a based on the i'th digits countingSort(A, B, lambda N: ithDigit(i,N)) return A def radixSortWrapper(A): '''This takes an array of integers and converts to an array of multi-precision integers in base 10, then sorts that array''' mp_A = [toDigits(n) for n in A] d = max(len(N) for N in mp_A) radixSort(mp_A, d, 10) A[:] = [fromDigits(N) for N in mp_A] return A # The rest is just for testing/debugging purposes. def selectTest(algs = (selectBySort, selectByHeap, quickSelect1, randomSelect, quickSelect2, quickSelect3)): sys.setrecursionlimit(1000) allgood = True maxsize, maxval = 500, 1000000 data = randomArray(maxsize, maxval) sortedData = sorted(data) for alg in algs: good = True for i in range(10): k = randrange(maxsize) X = alg(copy(data), k) # Check that X is actually the k'th smallest if X != sortedData[k]: good = False if not good: print("FAILED CHECK FOR", alg.__name__) allgood = False if allgood: print("Passed all selection checks") if __name__ == '__main__': selectTest() sortTest((quickSort1, quickSort2, quickSort3, countingSort, radixSortWrapper)) |