
Class 11: SLR Parsing

SI 413 - Programming Languages and Implementation

Dr. Daniel S. Roche

United States Naval Academy

Fall 2011

Roche (USNA) SI413 - Class 11 Fall 2011 1 / 10



Simple grammar from last lecture

S → E
E → E + T
E → T
T → n

LR items:

S → • E E → E + T •
S → E • E → • T
E → • E + T E → T •
E → E • + T T → • n
E → E + • T T → n •

Roche (USNA) SI413 - Class 11 Fall 2011 2 / 10



Pieces of the CFSM

The CSFM (Characteristic Finite State Machine) is a FA representing the
transitions between the LR item “states”.

There are two types of transitions:

Shift: consume a terminal or non-terminal symbol and move the • to
the right by one.

Example: T→•n T→n•
n

Closure: If the • is to the left of a non-terminal, we have an
ε-transition to any production of that non-terminal with the • all the
way to the left.

Example: E→E+•T T→•n
ε

Roche (USNA) SI413 - Class 11 Fall 2011 3 / 10



Nondeterministic CFSM for example grammar

S→•EE→•E+T

E→E•+T

E→E+•T

E→E+T•

E→•T E→T•

T→•n

T→n•

S→E•
Eε

εE
ε

+

T

ε

T

ε

n

Roche (USNA) SI413 - Class 11 Fall 2011 4 / 10



CFSM Properties

Observe that every state is accepting.

This is an NDFA that accepts valid stack contents.

The “trap states” correspond to a reduce operation:
Replace r.h.s. on stack with the l.h.s. non-terminal.

We can simulate an LR parse by following the CFSM on the current
stack symbols AND un-parsed tokens, then starting over after every
reduce operation changes the stack.

We can turn this into a DFA just by combining states.

Roche (USNA) SI413 - Class 11 Fall 2011 5 / 10



Deterministic CFSM for example grammar

S→•E
E→•E+T
E→•T
T→•n

0

S→E•
E→E•+T

1

E→T•
2

T→n•
3

E→E+•T
4

E→E+T•
5

E

T

n

+

Tn

Every state is labelled with a number.

Labels are pushed on the stack along with symbols.

After a reduce, go back to the state label left at the top of the stack.

Roche (USNA) SI413 - Class 11 Fall 2011 6 / 10



SLR

Parsing this way using a (deterministic) CFSM is called SLR Parsing.

Following an edge in the CFSM means shifting;
coming to a rule that ends in • means reducing.

SLR(k) means SLR with k tokens of look-ahead.
The previous grammar was SLR(0); i.e., no look-ahead required.

When might we need look-ahead?

Roche (USNA) SI413 - Class 11 Fall 2011 7 / 10



Example Grammar 2

Consider the following grammar:

S → W W
W → a

W → ab

Draw the CSFM for this grammar.
What is the problem?

The state that looks like W→a•
W→a•b

has a shift-reduce conflict.

Roche (USNA) SI413 - Class 11 Fall 2011 8 / 10



Example Grammar 2

Consider the following grammar:

S → W W
W → a

W → ab

Draw the CSFM for this grammar.
What is the problem?

The state that looks like W→a•
W→a•b

has a shift-reduce conflict.

Roche (USNA) SI413 - Class 11 Fall 2011 8 / 10



Example Grammar 3

Consider the following grammar:

S → W b

W → a

W → X a

X → a

Draw the CSFM for this grammar.
What is the problem?

The state that looks like W→a•
X→a•

has a reduce-reduce conflict.

Roche (USNA) SI413 - Class 11 Fall 2011 9 / 10



Example Grammar 3

Consider the following grammar:

S → W b

W → a

W → X a

X → a

Draw the CSFM for this grammar.
What is the problem?

The state that looks like W→a•
X→a•

has a reduce-reduce conflict.

Roche (USNA) SI413 - Class 11 Fall 2011 9 / 10



SLR(1)

SLR(1) parsers handle conflicts by using one token of look-ahead:

If the next token is an outgoing edge label of that state, shift and
move on.

If the next token is in the follow set of a non-terminal that we can
reduce to, then do that reduction.

Of course, there may still be conflicts, in which case the grammar is not
SLR(1). More look-ahead may be needed.

Roche (USNA) SI413 - Class 11 Fall 2011 10 / 10


