Scheme

The Scheme Language

History of Scheme
o 1958: Lisp language invented by John McCarthy

(based on Church’s lambda calculus, alternative to Turing machines)

o 1958: Steve Russell writes eval in machine code,
creates first Lisp interpreter

o 1962: First Lisp compiler, written in Lisp
o 1970s, 80s, 90s: Lisp is the dominant language for Al research

o 1975: Scheme created by Steele & Sussman:
minimal Lisp dialect focused on functional programming

o 1985: Structure and Interpretation of Computer Programs:
teaching Scheme in first-year at MIT

o 1991: How to Design Programs:
teaching Scheme to beginners based on design recipes

SI 413 (USNA) Unit 2 Fall 2023 1/23
Scheme
Scheme building blocks
From Lab 01:
o Syntax: (procedure argl arg2 ...)
o Arithmetic: +, *, remainder, etc.
o Logic: and, or, not, <, etc.
o define: Create constants and functions
o if and cond
@ coms, car, cdr
Sl 413 (USNA) Unit 2 Fall 2023 2/23
Lists and List Processing
Lists in Scheme
Remember how a singly-linked list works:
2 {3
Making linked lists in Scheme:
o Use cons for every node
o Use > () for the empty list
How to write the list above?
Sl 413 (USNA) Unit 2 Fall 2023 3/23

Lists and List Processing

Using and building lists

o ’() is an empty list.

o For an item a and list L, (cons a L) produces a list starting with a,
followed by all the elements in L.

o (car L) produces the first thing in a non-empty list L.
o (cdr L) produces a list with the first item of L removed.

o Interpreter prints the list (cons 1 (cons 2 (cons 3 >())))
as (1 2 3)

o Lists can be nested.

SI 413 (USNA) Unit 2 Fall 2023 4/23

Lists and List Processing

Useful list functions

o (list abec ...)
builds a list with the elements a, b, c, ...

o cXXXr, where X is a or d. Shortcut for things like
(cdr (car (car (cdr L)))) — (cdaadr L)

o (pair? L) — returns true iff L is a cons.
o (null? L) — returns true iff L is an empty list.

o (append L1 L2) — returns a list with the
elements of L1, followed by those of L2.
Can you write this function?

Sl 413 (USNA) Unit 2 Fall 2023 6/23

Lists and List Processing

Recursion on lists

Here is a general pattern for writing a recursive function that processes a
list:
(define (list-fun L)

(if (null? L)

Base case for empty list goes here

’

0
; Recursive case goes here.

; Get the recursive call and do something with it!
(+ 1 (list-fun (cdr L)))))

Sl 413 (USNA) Unit 2 Fall 2023 7/23

Quoting

Symbols

Scheme has a new data type: symbols:
o They are kind of like strings
o Except they're immutable (can't be altered)

o Somewhat similar to enum'’s in C.

©

Usually symbols are short words (no spaces)

©

The predicate symbol? is useful!

©

Use eqv? for comparisons.

To make a symbol, use a single quote: ’these ’are ’all ’symbols !
Typical Uses

o Names from a short list (months, weekdays, grades, ...)

o Used to tag data: (cons 10.3 ’feet)

SI 413 (USNA) Unit 2 Fall 2023 9/23

Quoting

Quoting

The single quote ’ is a shorthand for the quote function.
So (quote something) is the same as ’something.

Quoting in Scheme means “don’t evaluate this"
— and it's really useful!

What do you think (quote (1 2 3)) would produce?
How else could you get the same thing?

Sl 413 (USNA) Unit 2 Fall 2023 10/23

Quoting

Quoting Lists

Quote is the reason why ’ () means an empty list.
You can also use it for a nonempty list: >(a b ¢).

Quote also works recursively, so we can make nested lists: > (1 (2 3) 4) is
equivalent to (list 1 (list 2 3) 4)

What do you think this program will produce?

(define x 3)
(1 2 x)
(list 1 2 x)

Sl 413 (USNA) Unit 2 Fall 2023 11/23

Let

The need for local variables

This code finds the largest number in a list:

(define (1lmax L)
(cond ((null? (cdr L)) (car L))

((>= (car L) (lmax (cdr L))) (car L))
(else (lmax (cdr L)))))

What's the worst-case running time?
How could we fix it?

SI 413 (USNA) Unit 2

Fall 2023 13/23
Let
The let special form
Scheme provides let as a way to re-use temporary values:
(define (1lmax L)
(if (null? (cdr L))
(car L)
(let ((rest-max (lmax (cdr L))))
(if (>= (car L) rest-max)
(car L)
rest-max))))
Note the extra parentheses — to allow multiple definitions:
(let ((@a 5) (b 6)) (+ ab)) =11
Sl 413 (USNA) Unit 2 Fall 2023 14 /23

Syntactic Building Blocks

Components of Programs

The basic building blocks of any programming language are
atoms, values, expressions, and statements.

Of course they are related:
o Every atom is a value.
o Every value is an expression.
o Expressions specify the data in statements.

o A program is a series of statements.

Sl 413 (USNA) Unit 2 Fall 2023

16 /23

Syntactic Building Blocks

Atoms and Values

An atom is an indivisible piece of data.
Sometimes these are called “literals”.
Examples of atoms: numbers, chars,. ..

A value is any fixed piece of data..

Values include atoms, but can also include more complicated things like:

arrays, lists,. . .

SI 413 (USNA) Unit 2

Fall 2023

17/23

Syntactic Building Blocks

Expressions and Statements

An expression is code that evaluates to a value.
Examples: arithmetic, function calls,. ..

A statement is a stand-alone complete instruction.
o In Scheme, every expression is also a statement.

o In C++, most statements end in a semicolon.

Sl 413 (USNA) Unit 2

Fall 2023

18/23

Syntactic Building Blocks

Scheme grammar

Here is a CFG for the Scheme syntax we have seen so far:

CFG for Scheme

exprseq — expr | exprseq expr
expr — atom | (exprseq)
atom — identifier | number | boolean

This is incredibly simple!

S1 413 (USNA) Unit 2

Fall 2023

19/23

Evaluation Model in Scheme

Scheme is lists!

Everything in Scheme that looks like a list. .. is a list!
Scheme evaluates a list by using a general rule:

(vl v2 v3 ...) by recursively evaluating each el1, e2, etc.
o Then, apply the procedure v1 to the arguments v2, v3, ...

Can you think of any exceptions to this rule?
What if v1 is not a procedure?

o First, turn a list of expressions (el e2 e3 ...) into a list of values

SI 413 (USNA) Unit 2 Fall 2023 20/23
Evaluation Model in Scheme
Special Forms
The only exceptions to the evaluation rule are the special forms.
Special forms we have seen: define, if, cond, and, or.
What makes these “special” is that they
do not (always) evaluate (all) their arguments.
Example: evaluating (5) gives an error, but
(if #£ (5) 6) just returns 6 — it never evaluates the “(5)" part.
Sl 413 (USNA) Unit 2 Fall 2023 21/23

Evaluation Model in Scheme

Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

o Try (eval (list + 1 2))

o Even crazier: (eval (list ’define ’y 100))

What is the opposite (more properly, the inverse) of eval?

This makes Scheme homoiconic and self-extensible

Sl 413 (USNA) Unit 2 Fall 2023

22/23

