Sl 413: Programming Languages

Professor Keith Sullivan

This course is actually three courses!

Typically, SI 413 is split into three courses in a CS undergrad
curriculum

» Functional programming
» Compilers
» Programming language design

Skills OQutcome

Outcomes over the next few months:

» Learn a functional language
» Write an interpreter for a simple language
» Write a compiler for a virtual machine

» Learn a programming language on your own

Programming Languages

Why study programming languages?
» Understand obscure features
» Choose alternatives based on implementation knowledge
» Make good use of debuggers, linkers, and related tools

» Develop a vocabulary for describing programming languages

Phases of Programming

What does programming actually involve?
» Choose a language for the task
» Learn the language
» Write a program
» Compile the program

» Execute the program

Note: an interpreter essentially does compilation and execution
simultaneously, on-the-fly.

Compiled vs. Interpreted

Common compiled languages:
Common interpreted languages:

In between options:
» Just in Time Compilation

» Bytecode Compilation

Compilation

Character stream

\ N\
J—— Scanner (lexical analysis)

\ .) I Front
— Parser (syntax analysis) end
Parse tree
\ (Semantic analysis and
intermediate code generation
Abstract syntax tree or — 8

sther intermediate form —
\ Machine-independent
Modified — code improvement (optional

))
intermediate form
> (Target code generation)

Target language Back

(e.g., assembler) - end
& \ Machine-specific “
Modified / code improvement (optional)

target language

Token stream

Symbeol table

Scanning

Read individual characters and group them into tokens

int main(int argc, char *argv)

{

printf ("Hello,World, \n");
return 1;

int main (int arge

char * argv) { printf
() Hello World \ n

") : return 1 }

Parsing

» Organizes tokens from the scanner into a parse tree
» Parse tree shows how the tokens make a valid program

» Recursive rules called context free grammar

statements: statements statement | statement

statement:

| type ID LPAREN function_variables RPAREN tail
| CONST type ID ASSIGN expression SEMI
| CONTINUE SEMI
| RETURN SEMI
| BREAK SEMI

type: INT | CHAR | FLOAT | VOID | DOUBLE

tail: statement SEMI | LBRACE statements RBRACE

Semantic Analysis

» Discovery of the meaning of a program

> Symbol table: maps identifiers to information (type, scope,
structure)

» Symbol table enforces static semantic rules of the language

Index Symbol Type Value

1 int type

2 char* type

3 argc (1)

4 argv (2)

5 printf func:(8) — (2)

6 return func:(9) — (7)

7 void type

8 const_string (2) Hello world
9 const_int (1) 1

Abstract Syntax Tree

Pares down parse tree to essentials and annotates with symbol

table
Program
|
Cill —— call
A\
L
®) ®) ©6) ©)
Index Symbol Type Value
1 int type
2 char* type
3 argc (1)
4 argv (2)
5 printf func:(8) — (2)
6 return func:(9) — (7)
7 void type
8 const_string 2) Hello world
9 const.int (1)

