
SI 413: Programming Languages

Professor Keith Sullivan

This course is actually three courses!

Typically, SI 413 is split into three courses in a CS undergrad
curriculum

▶ Functional programming

▶ Compilers

▶ Programming language design

Skills Outcome

Outcomes over the next few months:

▶ Learn a functional language

▶ Write an interpreter for a simple language

▶ Write a compiler for a virtual machine

▶ Learn a programming language on your own

Programming Languages

Why study programming languages?

▶ Understand obscure features

▶ Choose alternatives based on implementation knowledge

▶ Make good use of debuggers, linkers, and related tools

▶ Develop a vocabulary for describing programming languages

Phases of Programming

What does programming actually involve?

▶ Choose a language for the task

▶ Learn the language

▶ Write a program

▶ Compile the program

▶ Execute the program

Note: an interpreter essentially does compilation and execution
simultaneously, on-the-fly.

Compiled vs. Interpreted

Common compiled languages:

Common interpreted languages:

In between options:

▶ Just in Time Compilation

▶ Bytecode Compilation

Compilation

Scanning

Read individual characters and group them into tokens

int main (int argc , char ∗ argv)
{

p r i n t f ("Hello␣World␣\n") ;
return 1 ;

}

int main (int argc ,
char * argv) { printf
(” Hello World \ n
”) ; return 1 ; }

Parsing

▶ Organizes tokens from the scanner into a parse tree

▶ Parse tree shows how the tokens make a valid program

▶ Recursive rules called context free grammar

s t a t emen t s : s t a t emen t s s ta tement | s ta tement

s ta tement :
| type ID LPAREN f u n c t i o n v a r i a b l e s RPAREN t a i l
| CONST type ID ASSIGN e x p r e s s i o n SEMI
| CONTINUE SEMI
| RETURN SEMI
| BREAK SEMI

type : INT | CHAR | FLOAT | VOID | DOUBLE

t a i l : s t a t ement SEMI | LBRACE s ta t emen t s RBRACE

Semantic Analysis

▶ Discovery of the meaning of a program

▶ Symbol table: maps identifiers to information (type, scope,
structure)

▶ Symbol table enforces static semantic rules of the language

Index Symbol Type Value
1 int type
2 char* type
3 argc (1)
4 argv (2)
5 printf func:(8) → (2)
6 return func:(9) → (7)
7 void type
8 const string (2) Hello world
9 const int (1) 1

Abstract Syntax Tree

Pares down parse tree to essentials and annotates with symbol
table

Index Symbol Type Value
1 int type
2 char* type
3 argc (1)
4 argv (2)
5 printf func:(8) → (2)
6 return func:(9) → (7)
7 void type
8 const string (2) Hello world
9 const int (1) 1

