
Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Fast and Small:
Multiplying Polynomials without Extra Space

Daniel S. Roche

Symbolic Computation Group
School of Computer Science

University of Waterloo

CECM Day
SFU, Vancouver, 24 July 2009



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Preliminaries

We study algorithms for univariate polynomial multiplication:

The Problem

Given: A ring R, an integer n,
and f , g ∈ R[x] with degrees less than n

Compute: Their product f · g ∈ R[x]

The Model

• Ring operations have unit cost

• Random reads from input, random reads/writes to output

• Space complexity determined by size of auxiliary storage



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Univariate Multiplication Algorithms

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer
Karatsuba/Ofman ’63

O(nlog2 3) or O(n1.59) O(n)

FFT-based
Schönhage/Strassen ’71

Cantor/Kaltofen ’91
O(n log n log log n) O(n)

Goal: Keep time complexity the same, reduce space



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

The Evolution of Multiplication

Small and slow



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

The Evolution of Multiplication

Big and fast



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

The Evolution of Multiplication

Small and fast



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Previous Work

• Savage & Swamy 1979 O(n2) time-space lower bound for
straight line programs

• Abrahamson 1985: O(n2) time-space lower bound for
branching programs



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Previous Work

• Savage & Swamy 1979 O(n2) time-space lower bound for
straight line programs

• Abrahamson 1985: O(n2) time-space lower bound for
branching programs

• Monagan 1993: Importance of space efficiency for
multiplication over Zp[x]

• Maeder 1993: Bounds extra space for Karatsuba
multiplication so that storage can be preallocated
— about 2n extra memory cells required.

• Thomé 2002: Karatsuba multiplication for polynomials
using n extra memory cells.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Present Contributions

• New Karatsuba-like algorithm with O(log n) space

• New FFT-based algorithm with O(1) space
under certain conditions

• Implementations in C over Z/pZ



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Standard Karatsuba Algorithm

Idea: Reduce one degree-2k multiplication to three of degree k.

• Originally noticed by Gauss (multiplying complex numbers),
rediscovered and formalized by Karatsuba & Ofman

Input: f , g ∈ R[x] each with degree less than 2k.

Write f = f0 + f1xk and g = g0 + g1xk.

f0 f1 g0 g1



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “0”

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

(empty) (empty) (empty) (empty)

To Compute: f · g



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “1”

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: f · g + h



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Low-Space Karatsuba Algorithms
Version “2”

1 The low-order coefficients of the output are initialized as h,
and the product f · g is added to this.

2 The first polynomial f is given as a sum f (0)
+ f (1).

Read-Only Input Space:

f01 f11

f00 f10

g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: (f (0)
+ f (1)) · g + h



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Dirty Details

Restrict modulus to 29 bits to allow for delayed reductions

In the Karatsuba step

• Only 4 values are added/subtracted in one position

• Delay reductions, perform two “corrections”

Classical algorithm

• Switch over at n ≤ 32 (determined experimentally)

• Perform arithmetic in double-precision long longs;
delay reductions (a la Monagan)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Problem: code explosion

3 “versions” of algorithms (based on extra constraints)
×

Karatsuba or classical
×

odd-sized or even-sized operands
×

equal-sized operands or “one different”

Solution: Use “supermacros” in C:
Same file is included multiple times with some parameter values
changed (crude form of code generation).



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

DFT-Based Multiplication

Input f g

DFT(f) DFT(g)

Pointwise multiplication

DFT(f·g)

f·g

Evaluation (DFT)

Interpolation (inverse DFT)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Simplifying Assumptions

From now on:

• deg f + deg g < n = 2k for some k ∈ N

• The base ring R contains a 2k-PRU ω

That is, assume “virtual roots of unity” have already been found,
and optimize from there.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Usual Formulation of the FFT

Perform two n
2 -DFTs followed by n

2 2-DFTs:

• Write f (x) = feven(x2) + x · fodd(x2)
(i.e. deg feven, deg fodd < n/2)

• Compute DFTω2(feven) and DFTω2(fodd)

• Compute each f (ωi) = feven(ω2i) + ω · fodd(ω2i)

Make use of “butterfly circuit” for each size-2 DFT:

b

b

b

b

a

b

a + ωi · b

a − ωi · b

i



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example: 8-Way FFT
a0

a1

a2

a3

a4

a5

a6

a7

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

0

0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

2

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

2

1

3

f (ω0)

f (ω4)

f (ω2)

f (ω6)

f (ω1)

f (ω5)

f (ω3)

f (ω7)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Reverted Binary Ordering

In-Place FFT permutes the ordering into reverted binary:

0=0002

0=0002

1=0012

4=1002

2=0102

2=0102

3=0112

6=1102

4=1002

1=0012

5=1012

5=1012

6=1102

3=0112

7=1112

7=1112

Problem: Powers of ω are not accessed in order
Possible solutions:

• Precompute all powers of ω— too much space

• Perform steps out of order — terrible for cache

• Permute input before computing — costly



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Alternate Formulation of FFT

Perform n
2 2-DFTs followed by two n

2 -DFTs

• Write f = flow + xn/2 · fhigh

• Compute f0 = flow + fhigh and f1 = flow(ωx) − fhigh(ωx)

• Compute each f (ω2i) = f0(ω2i) and f (ω2i+1) = f1(ω2i)

Modified “butterfly circuit”:

b

b

b

b

a

b

a + b

(a − b)ωi

i



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Example: 8-Way In-Place FFT (Alternate Formulation)
a0

a1

a2

a3

a4

a5

a6

a7

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

1

2

3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

2

0

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

0

0

0

f (ω0)

f (ω4)

f (ω2)

f (ω6)

f (ω1)

f (ω5)

f (ω3)

f (ω7)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Folded Polynomials

Recall the basis for the “alternate” FFT formulation:

f0 = flow + fhigh

f1 = flow(ωx) − fhigh(ωx)

A generalization (recalling that n = 2k):

Definition (Folded Polynomials)

fi = f (ω2i−1
x) rem x2k−i

− 1

Theorem

f
(

ω2i(2j+1)
)

= fi+1

(

ω2i+1j
)

So by computing each fi at all powers of ωi,
we get the values of f at all powers of ω.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Recursively Applying the Alternate Formulation

Example (Reverted Binary Ordering of 0, 1, . . . , 15)

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

DFTω(f ) in binary reversed order
can be computed by DFTs of fis:

DFTω(f )

DFTω2(f1)DFTω4(f2)DFTω8(f3)· · ·



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

Input

(empty)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f1 g1

Folding



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f1) DFT(g1)

In-Place FFTs (alternate formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f1) DFT(f1·g1)

Pointwise Multiplication



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f2 g2 DFT(f1·g1)

Folding



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f2) DFT(g2) DFT(f1·g1)

In-Place FFTs (alternate formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

DFT(f) DFT(f1·g1)DFT(f2·g2)

Pointwise Multiplication



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

· · · · · · DFT(f·g)

(k iterations)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

FFT-Based Multiplication without Extra Space

Idea: Solve half of remaining problem at each iteration

f g

f·g

In-Place Reverse FFT (usual formulation)



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Analysis

Time cost of the various stages:

• Folding: O(n) cost times log n folds = O(n log n)

• FFTs: O(m log m) for m = n, n/2, n/4, . . . , 1 = O(n log n)

• Multiplications: n/2 + n/4 + · · · + 1 = O(n)

Total cost: O(n log n) time and O(1) extra space
when the following conditions hold:

• n = deg f + deg g + 1 is a power of 2

• R contains an n-PRU ω



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Modular Arithmetic

Use floating-point Barrett reduction (from NTL):

• Pre-compute an approximation of 1/p

• Given a, b ∈ Zp, compute an approximation of q = ⌊a · b · (1/p)⌋

• Then ab − qp equals ab rem p plus or minus p.

The cost of this method:

• 2 double multiplications

• 2 int multiplications

• 1 int subtraction

• 3 conversions between int and double

• 2 “correction” steps to get exact result
֒→ not necessary until the very end!



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Implementation Benchmarking

Details of tests:

• 2.5 GHz 64-bit Athalon, 256KB L1, 1MB L2, 2GB RAM

• p = 167772161 (28 bits)

• Comparing CPU time (in seconds) for the computation

Disclaimer

We are comparing apples to oranges.



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Timing Benchmarks

0

0.5

1

1.5

2

2.5

3

6 8 10 12 14 16 18 20

Time
over
NTL

log2n

Karatsuba-like

^ ^ ^
^

^

^

^

^

FFT-based

+

+

+

+
+ + +

+ +

+
+
+ + + +

+



Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Future Directions

• Efficient implementation over Z (GMP)

• Similar results for
Toom-Cook 3-way or k-way

• What modulus bit restriction is “best”?

• Is completely in-place (overwriting input) possible?


	Introduction
	Space-Efficient Karatsuba
	Space-Efficient FFT-Based
	Conclusions

