Fast and Small: Multiplying Polynomials without Extra Space

Daniel S. Roche

Symbolic Computation Group School of Computer Science University of Waterloo

CECM Day SFU, Vancouver, 24 July 2009 Introduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Preliminaries

We study algorithms for univariate polynomial multiplication:

The Problem

Given: A ring R, an integer n,

and $f, g \in R[x]$ with degrees less than n

Compute: Their product $f \cdot g \in R[x]$

The Model

- · Ring operations have unit cost
- Random reads from input, random reads/writes to output
- · Space complexity determined by size of auxiliary storage

Univariate Multiplication Algorithms

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3}) \text{ or } O(n^{1.59})$	O(n)
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n \log n \log \log n)$	O(n)

Univariate Multiplication Algorithms

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3}) \text{ or } O(n^{1.59})$	O(n)
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n \log n \log \log n)$	O(n)

Goal: Keep time complexity the same, reduce space

The Evolution of Multiplication

Small and slow

The Evolution of Multiplication

Big and fast

The Evolution of Multiplication

Small and fast

Previous Work

- Savage & Swamy 1979 $O(n^2)$ time-space lower bound for straight line programs
- Abrahamson 1985: $O(n^2)$ time-space lower bound for branching programs

Previous Work

- Savage & Swamy 1979 $O(n^2)$ time-space lower bound for straight line programs
- Abrahamson 1985: $O(n^2)$ time-space lower bound for branching programs
- Monagan 1993: Importance of space efficiency for multiplication over $\mathbb{Z}_p[x]$
- Maeder 1993: Bounds extra space for Karatsuba multiplication so that storage can be preallocated — about 2n extra memory cells required.
- Thomé 2002: Karatsuba multiplication for polynomials using n extra memory cells.

Present Contributions

- New Karatsuba-like algorithm with $O(\log n)$ space
- New FFT-based algorithm with O(1) space under certain conditions
- Implementations in C over $\mathbb{Z}/p\mathbb{Z}$

Standard Karatsuba Algorithm

Idea: Reduce one degree 2k multiplication to three of degree k.

 Originally noticed by Gauss (multiplying complex numbers), rediscovered and formalized by Karatsuba & Ofman

Input: $f, g \in R[x]$ each with degree less than 2k.

Write
$$f = f_0 + f_1 x^k$$
 and $g = g_0 + g_1 x^k$.

Low-Space Karatsuba Algorithms

Version "0"

Read-Only Input Space:

Read/Write Output Space:

To Compute: $f \cdot g$

Low-Space Karatsuba Algorithms

Version "1"

1 The low-order coefficients of the output are initialized as h, and the product $f \cdot g$ is added to this.

Read-Only Input Space:

Read/Write Output Space:

To Compute: $f \cdot g + h$

g1

Low-Space Karatsuba Algorithms

Version "2"

- 1 The low-order coefficients of the output are initialized as h, and the product $f \cdot g$ is added to this.
- 2 The first polynomial f is given as a sum $f^{(0)} + f^{(1)}$.

Read-Only Input Space:

Read/Write Output Space:

h0 h1	(empty)	(empty)
-------	---------	---------

To Compute: $(f^{(0)} + f^{(1)}) \cdot g + h$

oduction Space-Efficient Karatsuba Space-Efficient FFT-Based Conclusions

Dirty Details

Restrict modulus to 29 bits to allow for delayed reductions

In the Karatsuba step

- Only 4 values are added/subtracted in one position
- Delay reductions, perform two "corrections"

Classical algorithm

- Switch over at $n \le 32$ (determined experimentally)
- Perform arithmetic in double-precision long longs; delay reductions (a la Monagan)

Problem: code explosion

3 "versions" of algorithms (based on extra constraints) X Karatsuba or classical X odd-sized or even-sized operands X equal-sized operands or "one different"

Solution: Use "supermacros" in C: Same file is included multiple times with some parameter values changed (crude form of code generation).

DFT-Based Multiplication

Simplifying Assumptions

From now on:

- $\deg f + \deg g < n = 2^k$ for some $k \in \mathbb{N}$
- The base ring R contains a 2^k-PRU ω

That is, assume "virtual roots of unity" have already been found, and optimize from there.

Usual Formulation of the FFT

Perform two $\frac{n}{2}$ -DFTs followed by $\frac{n}{2}$ 2-DFTs:

- Write $f(x) = f_{\text{even}}(x^2) + x \cdot f_{\text{odd}}(x^2)$ (i.e. $\deg f_{\text{even}}, \deg f_{\text{odd}} < n/2$)
- Compute DFT $_{\omega^2}(f_{\text{even}})$ and DFT $_{\omega^2}(f_{\text{odd}})$
- Compute each $f(\omega^i) = f_{\text{even}}(\omega^{2i}) + \omega \cdot f_{\text{odd}}(\omega^{2i})$

Make use of "butterfly circuit" for each size-2 DFT:

Example: 8-Way FFT

Space-Efficient FFT-Based

Reverted Binary Ordering

In-Place FFT permutes the ordering into reverted binary:

Problem: Powers of ω are not accessed in order Possible solutions:

- Precompute all powers of ω too much space
- Perform steps out of order terrible for cache
- Permute input before computing costly

Alternate Formulation of FFT

Perform $\frac{n}{2}$ 2-DFTs followed by two $\frac{n}{2}$ -DFTs

- Write $f = f_{low} + x^{n/2} \cdot f_{high}$
- Compute $f_0 = f_{\text{low}} + f_{\text{high}}$ and $f_1 = f_{\text{low}}(\omega x) f_{\text{high}}(\omega x)$
- Compute each $f(\omega^{2i}) = f_0(\omega^{2i})$ and $f(\omega^{2i+1}) = f_1(\omega^{2i})$

Modified "butterfly circuit":

Example: 8-Way In-Place FFT (Alternate Formulation)

Folded Polynomials

Recall the basis for the "alternate" FFT formulation:

$$f_0 = f_{\text{low}} + f_{\text{high}}$$

 $f_1 = f_{\text{low}}(\omega x) - f_{\text{high}}(\omega x)$

A generalization (recalling that $n = 2^k$):

Definition (Folded Polynomials)

$$f_i = f(\omega^{2^{i-1}}x) \quad \text{rem } x^{2^{k-i}} - 1$$

Theorem

$$f\left(\omega^{2^{i}(2j+1)}\right) = f_{i+1}\left(\omega^{2^{i+1}j}\right)$$

So by computing each f_i at all powers of ω^i , we get the values of f at all powers of ω .

Recursively Applying the Alternate Formulation

Example (Reverted Binary Ordering of 0, 1, ..., 15)

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

 $\mathrm{DFT}_{\omega}(f)$ in binary reversed order can be computed by DFTs of f_i s:

 $DFT_{\omega}(f)$

··· DFT $_{\omega^8}(f_3)$

 $DFT_{\omega^4}(f_2)$

 $\mathrm{DFT}_{\omega^2}(f_1)$

Idea: Solve half of remaining problem at each iteration

f 9

Input

(empty)

Idea: Solve half of remaining problem at each iteration

Idea: Solve half of remaining problem at each iteration

f 9

In-Place FFTs (alternate formulation)

DFT(f1) DFT(g1)

Idea: Solve half of remaining problem at each iteration

Pointwise Multiplication

Idea: Solve half of remaining problem at each iteration

Idea: Solve half of remaining problem at each iteration

f 9

In-Place FFTs (alternate formulation)

DFT(f2) DFT(g2) DFT(f1·g1)

Idea: Solve half of remaining problem at each iteration

Pointwise Multiplication

Idea: Solve half of remaining problem at each iteration

f g

(k iterations)

Idea: Solve half of remaining problem at each iteration

f 9

In-Place Reverse FFT (usual formulation)

____f.g

Analysis

Time cost of the various stages:

- **Folding**: O(n) cost times $\log n$ folds = $O(n \log n)$
- **FFTs**: $O(m \log m)$ for $m = n, n/2, n/4, ..., 1 = O(n \log n)$
- Multiplications: $n/2 + n/4 + \cdots + 1 = O(n)$

Total cost: $O(n \log n)$ time and O(1) extra space when the following conditions hold:

- $n = \deg f + \deg g + 1$ is a power of 2
- R contains an n-PRU ω

Modular Arithmetic

Use floating-point Barrett reduction (from NTL):

- Pre-compute an approximation of 1/p
- Given $a, b \in \mathbb{Z}_p$, compute an approximation of $q = \lfloor a \cdot b \cdot (1/p) \rfloor$
- Then ab qp equals $ab \operatorname{rem} p$ plus or minus p.

The cost of this method:

- 2 double multiplications
- 2 int multiplications
- 1 int subtraction
- 3 conversions between int and double
- 2 "correction" steps to get exact result
 - → not necessary until the very end!

Implementation Benchmarking

Details of tests:

- 2.5 GHz 64-bit Athalon, 256KB L1, 1MB L2, 2GB RAM
- p = 167772161 (28 bits)
- Comparing CPU time (in seconds) for the computation

Disclaimer

We are comparing apples to oranges.

Timing Benchmarks

Future Directions

- Efficient implementation over Z (GMP)
- Similar results for Toom-Cook 3-way or k-way
- What modulus bit restriction is "best"?
- Is completely in-place (overwriting input) possible?