
The Selection Problem

Order Statistics

We often want to compute a median of a list of values.
(It gives a more accurate picture than the average sometimes.)

More generally, what element has position k in the sorted list?
(For example, for percentiles or trimmed means.)

Selection Problem

Given a list A of size n, and an integer k ,
what element is at position k in the sorted list?
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The Selection Problem

Sorting-Based Solutions

First idea: Sort, then look-up

Second idea: Cut-off selection sort
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The Selection Problem

Heap-Based Solutions

First idea: Use a size-k max-heap

Second idea: Use a size-n min-heap
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QuickSelect

Algorithm Design

What algorithm design paradigms could we use to attack the selection
problem?

Reduction to known problem
What we just did!

Memoization/Dynamic Programming
Would need a recursive algorithm first. . .

Divide and Conquer
Like binary search — seems promising. What’s the problem?
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QuickSelect

A better “divide”

Consider this array: A = [60, 43, 61, 87, 89, 87, 77, 11, 49, 45]

Difficult: Finding the element at a given position.
For example, what is the 5th-smallest element in A?

Easier: Finding the position of a given element.
For example, what is the position of x = 77 in the sorted order?

Idea: Pick an element (the pivot), and sort around it.
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QuickSelect

Partition Algorithm

Input: Array A of size n. Pivot is in A[0].
Output: Index p such that A[p] holds the pivot, and
A[a] ≤ A[p] < A[b] for all 0 ≤ a < p < b < n.

def partition(A):

n = len(A)

i, j = 1, n-1

while i <= j:

if A[i] <= A[0]:

i = i + 1

elif A[j] > A[0]:

j = j - 1

else:

swap(A, i, j)

swap(A, 0, j)

return j
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QuickSelect

Analysis of partition

Loop Invariant: Everything before A[i ] is ≤ the pivot;
everything after A[j ] is greater than the pivot.

Running time: Consider the value of j − i .
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QuickSelect

Choosing a Pivot

The choice of pivot is really important!

Want the partitions to be close to the same size.

What would be the very best choice?

Initial “dumb” idea: Just pick the first element:

Input: Array A of length n
Output: Index of the pivot element we want

def choosePivot1(A):

return 0
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QuickSelect

The Algorithm

Input: Array A of length n, and integer k
Output: Element at position k in the sorted array

def quickSelect1(A, k):

n = len(A)

swap(A, 0, choosePivot1(A))

p = partition(A)

if p == k:

return A[p]

elif p < k:

return quickSelect1(A[p+1 : n], k-p-1)

elif p > k:

return quickSelect1(A[0 : p], k)
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Analysis of QuickSelect

QuickSelect: Initial Analysis

Best case:

Worst case:
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Analysis of QuickSelect

Average-case analysis

Assume all n! permutations are equally likely.
Average cost is sum of costs for all permutations, divided by n!.

Define T (n, k) as average cost of quickSelect1(A,k):

T (n, k) = n +
1

n




k−1∑

p=0

T (n − p − 1, k − p − 1) +
n−1∑

p=k+1

T (p, k)




See the book for a precise analysis, or. . .
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Analysis of QuickSelect

Average-Case of quickSelect1

First simplification: define T (n) = maxk T (n, k)

The key to the cost is the position of the pivot.

There are n possibilities, but can be grouped into:

Good pivots: The position p is between n/4 and 3n/4.
Size of recursive call:

Bad pivots: Position p is less than n/4 or greater than 3n/4
Size of recursive call:

Each possibility occurs 1
2 of the time.
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Analysis of QuickSelect

Average-Case of quickSelect1

Based on the cost and the probability of each possibility, we have:

T (n) ≤ n +
1

2
T

(
3n

4

)
+

1

2
T (n)

(Assumption: every permutation in each partition is also equally likely.)
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Randomized Pivot Choosing

Drawbacks of Average-Case Analysis

To get the average-case we had to make some BIG assumptions:

Every permutation of the input is equally likely

Every permutation of each half of the partition is still equally likely

The first assumption is actually false in most applications!
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Randomized Pivot Choosing

Randomized algorithms

Randomized algorithms use a source of random numbers
in addition to the given input.

AMAZINGLY, this makes some things faster!

Idea: Shift assumptions on the input distribution
to assumptions on the random number distribution.
(Why is this better?)

Specifically, assume the function random(n) returns an integer between
0 and n-1 with uniform probability.

SI 335 (USNA) Unit 7 Spring 2015 15 / 41



Randomized Pivot Choosing

Randomized quickSelect
We could shuffle the whole array into a randomized ordering, or:

1 Choose the pivot element randomly:

Randomized pivot choice

def choosePivot2(A):

# This returns a random number from 0 up to n-1

return randrange (0, len(A))

2 Incorporate this into the quickSelect algorithm:

Randomized selection

def quickSelect2(A, k):

swap(A, 0, choosePivot2(A))

# ... the rest is the same as quickSelect1
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Randomized Pivot Choosing

Analysis of quickSelect2

The expected cost of a randomized algorithm is the probability of each
possibility, times the cost given that possibility.

We will focus on the expected worst-case running time.

Two cases: good pivot or bad pivot. Each occurs half of the time. . .
The analysis is exactly the same as the average case!

Expected worst-case cost of quickSelect2 is Θ(n).
Why is this better than average-case?
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Median of Medians

Do we need randomization?

Can we do selection in linear time without randomization?

Blum, Floyd, Pratt, Rivest, and Tarjan figured it out in 1973.

But it’s going to get a little complicated. . .
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Median of Medians

Median of Medians

Idea: Develop a divide-and-conquer algorithm for choosing the pivot.

1 Split the input into m sub-arrays

2 Find the median of each sub-array

3 Look at just the m medians, and take the median of those

4 Use the median of medians as the pivot

This algorithm will be mutually recursive with the selection algorithm.
Crazy!
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Median of Medians

Note: q is a parameter, not part of the input. We’ll figure it out next.

def choosePivot3(A):

n = len(A)

m = n // q

# base case

if m <= 1:

return n // 2

# Find median of each size-q group

medians = []

for i in range(0, m):

medians.append(

quickSelect3(A[i*q : (i+1)*q], q//2))

# Find median of medians

quickSelect3(medians , m//2)

return m//2
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Median of Medians

Worst case of choosePivot3(A)

Assume all array elements are distinct.

Question: How unbalanced can the pivoting be?

At least dm/2e medians must be ≤ the chosen pivot.

At least dq/2e elements are ≤ each median.

So the pivot must be greater than or equal to at least

⌈m
2

⌉
·
⌈q

2

⌉

elements in the array, in the worst case.

By the same reasoning, as many elements must be ≥ the chosen
pivot.
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Median of Medians

Worst-case example, q = 3

A = [13, 25, 18, 76, 39, 51, 53, 41, 96, 5, 19, 72, 20, 63, 11]

Divide into size-q subarraysFind median of each subarrayFind median
of medians

medians→
13 76 53 5 20

25 39 41 19 63

18 51 96 72 11

13 39 41 5 11

18 51 53 19 20

25 76 96 72 63

13 5 11 39 41

18 19 20 51 53

25 72 63 76 96

SI 335 (USNA) Unit 7 Spring 2015 22 / 41

Median of Medians

Aside: “At Least Linear”

Definition

A function f (n) is at least linear if and only if f (n)/n is non-decreasing
(for sufficiently large n).

Any function that is Θ(nc(log n)d) with c ≥ 1 is “at least linear”.

You can pretty much assume that any running time that is Ω(n) is
“at least linear”.

Important consequence: If T (n) is at least linear, then
T (m) + T (n) ≤ T (m + n) for any positive-valued variables n and m.
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Median of Medians

Analysis of quickSelect3

Since quickSelect3 and choosePivot3 are mutually recursive, we have
to analyze them together.

Let T (n) = worst-case cost of quickSelect3(A,k)

Let S(n) = worst-case cost of selectPivot3(A)

T (n) =

S(n) =

Combining these, T (n) =

SI 335 (USNA) Unit 7 Spring 2015 24 / 41



Median of Medians

Choosing q

What if q is big? Try q = n/3.

What if q is small? Try q = 3.
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Median of Medians

Choosing q

What about q = 5?
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QuickSort

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

def quickSort1(A):

n = len(A)

if n > 1:

swap(A, 0, choosePivot1(A))

p = partition(A)

A[0 : p] = quickSort1(A[0 : p])

A[p+1 : n] = quickSort1(A[p+1 : n])

return A
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QuickSort

QuickSort vs QuickSelect

Again, there will be three versions depending on how the pivots are
chosen.

Crucial difference: QuickSort makes two recursive calls

Best-case analysis:

Worst-case analysis:

We could ensure the best case by using quickSelect3 for the pivoting.
In practice, this is too slow.
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QuickSort

Average-case analysis of quickSort1

Of all n! permutations, (n − 1)! have pivot A[0] at a given position i .

Average cost over all permutations:

T (n) =
1

n

n−1∑

i=0

(
T (i) + T (n − i − 1)

)
+ Θ(n), n ≥ 2

Do you want to solve this directly?

Instead, consider the average depth of the recursion.
Since the cost at each level is Θ(n), this is all we need.
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QuickSort

Average depth of recursion for quickSort1

D(n) = average recursion depth for size-n inputs.

H(n) =

{
0, n ≤ 1

1 + 1
n

∑n−1
i=0 max

(
H(i),H(n − i − 1)

)
, n ≥ 2

We will get a good pivot (n/4 ≤ p ≤ 3n/4) with probability 1
2

The larger recursive call will determine the height (i.e., be the “max”)
with probability at least 1

2 .
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QuickSort

Summary of QuickSort analysis

quickSort1: Choose A[0] as the pivot.

Worst-case: Θ(n2)
Average case: Θ(n log n)

quickSort2: Choose the pivot randomly.

Worst-case: Θ(n2)
Expected case: Θ(n log n)

quickSort3: Use the median of medians to choose pivots.

Worst-case: Θ(n log n)
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Sorting without Comparisons

Sorting so far

We have seen:

Quadratic-time algorithms:
BubbleSort, SelectionSort, InsertionSort

n log n-time algorithms:
HeapSort, MergeSort, QuickSort

O(n log n) is asymptotically optimal in the comparison model.

So how could we do better?
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Sorting without Comparisons

BucketSort

BucketSort is a general approach, not a specific algorithm:

1 Split the range of outputs into k groups or buckets

2 Go through the array, put each element into its bucket

3 Sort the elements in each bucket (perhaps recursively)

4 Dump sorted buckets out, in order

Notice: No comparisons!
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Sorting without Comparisons

countingSort(A,k)

Precondition 0 ≤ A[i ] < k for all indices i

def countingSort(A, k):

C = [0] * k # size-k array filled with 0’s

for x in A:

C[x] = C[x] + 1

# Now C has the counts.

# P will hold the positions.

P = [0]

for i in range(1, k):

P.append(P[i-1] + C[i-1])

# Now copy everything into its proper position.

for x in copy(A):

A[P[x]] = x

P[x] = P[x] + 1

return A
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Sorting without Comparisons

Analysis of CountingSort

Time:

Space:
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Sorting without Comparisons

Stable Sorting

Definition

A sorting algorithm is stable if elements with the same key stay in the
same order.

Quadratic algorithms and MergeSort are easily made stable

QuickSort will require extra space to do stable partition.

CountingSort is stable.
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Sorting without Comparisons

radixSort(A,d,B)

Input: Integer array A of length n, and integers d and B such that every
A[i ] has d digits A[i ] = xd−1xd−2 · · · x0, to the base B.
Output: A gets sorted.

def radixSort(A, d, B):

for i in range(0, d):

countingSort(A, B) # based on the i’th digits

return A

Works because CountingSort is stable!

Analysis:
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Sorting without Comparisons

Summary of Sorting Algorithms

Every algorithm has its place and purpose!

Algorithm Analysis In-place? Stable?

SelectionSort Θ(n2) best and worst yes yes
InsertionSort Θ(n) best, Θ(n2) worst yes yes
HeapSort Θ(n log n) best and worst yes no
MergeSort Θ(n log n) best and worst no yes
QuickSort Θ(n log n) best, Θ(n2) worst yes no
CountingSort Θ(n + k) best and worst no yes
RadixSort Θ(d(n + k)) best and worst yes yes
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More MSTs

Back to Kruskal’s

Remember Kruskal’s algorithm for finding MSTs?

Two major components:

Sorting the edges by weight

Doing a bunch of union and find operations

We’re ready to optimize it now!
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More MSTs

Union-Find with Path Compression

Idea: Each set is stored as a tree, not a linked list.
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More MSTs

Final analysis of Kruskal’s
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