
Introduction

Comparing Problems

Remember the concepts of Problem, Algorithm, and Program.

We’ve gotten pretty good at comparing algorithms.
How do we compare problems?

Sorted Array Search

Sorting

Integer Factorization

Integer Multiplication

Maximum Matching

Minimum Vertex Cover

SI 335 (USNA) Unit 6 Spring 2015 1 / 42

Introduction

Computational Complexity

The difficulty of a problem is the worst-case cost of the
best possible algorithm that solves that problem.

Computational complexity is the study and classification of problems
according to their inherent difficulty.

Why study this?

Want to know when an algorithm is as good as possible.

Sometimes we want problems to be difficult!

SI 335 (USNA) Unit 6 Spring 2015 2 / 42

Introduction

How to compare problems

Big-O, big-Θ, and big-Ω are used to compare two functions.

How can we compare two problems?

Example: Sorting vs. Min

Forget about any specific algorithms for these problems.

Instead, develop algorithms to solve one problem
by using any algorithm for the other problem.

Solving selection using a min algorithm:

Solving min using a selection algorithm:

Conclusion?

SI 335 (USNA) Unit 6 Spring 2015 3 / 42

Introduction

Defining tractable and intractable

Cobham-Edmonds thesis:
A problem is tractable only if it can be solved in polynomial time.

What can we say about intractable problems?

Maybe they’re undecidable (e.g., the halting problem)

Maybe they just seem impossible (e.g., regexp equivalence)

But not always! (e.g., integer factorization)

Million-dollar question:
Can any problems be verified quickly but not solved quickly?

SI 335 (USNA) Unit 6 Spring 2015 4 / 42

Complexity Basics

Fair comparisons: Machine models

Proving lower bounds on problems requires a careful model of
computation.

Candidates:

Turing machine

Clock cycles on your phone

MIPS instructions

“Primitive operations”

Theorem

These models are all polynomial-time equivalent.

SI 335 (USNA) Unit 6 Spring 2015 5 / 42

Complexity Basics

Fair comparisons: Bit-length

Input size is our measure of difficulty (n).
It must be measured the same between different problems!

Past examples:

Factorization Θ(
√

n) vs. HeapSort Θ(n log n)

Karatsuba’s Θ(n1.59) vs. Strassen’s Θ(n2.81)

Dijkstra’s Θ(n2) vs Dijkstra’s Θ((n + m) log n)

Only measure for this unit: length in bits of the input

SI 335 (USNA) Unit 6 Spring 2015 6 / 42

Complexity Basics

Fair comparisons: Decision problems

What about the size of the output? We’ll consider only:

Definition: Decision Problems

Problems whose output is YES or NO

Is this a big restriction?

Search for a number in an array

EI Scheduling

Integer factorization

Minimum vertex cover

SI 335 (USNA) Unit 6 Spring 2015 7 / 42

Complexity Basics

Decision problem comparison

Compare regular factorization with decision problem version:

1 Given instance (N, k) of decision problem,
use computational version to solve it:

2 Given instance N of computational problem,
use decision problem to solve it:

SI 335 (USNA) Unit 6 Spring 2015 8 / 42

Complexity Basics

Formal Problem Definitions
Page 1

SHORTPATH(G,u,v,k)

Input: Graph G = (V , E), vertices u and v , integer k
Output: Does G have a path from u to v of length at most k?

Input size and encoding:

LONGPATH(G,u,v,k)

Input: Graph G = (V , E), vertices u and v , integer k
Output: Does G have a path from u to v of length at least k?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2015 9 / 42

Complexity Basics

Formal Problem Definitions
Page 2

FACT(N,k)

Input: Integers N and k
Output: Does N have a prime factor less than k?

Input size and encoding:

VC(G,k)

Input: Graph G = (V , E), integer k
Output: Does G have a vertex cover with at most k nodes?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2015 10 / 42

Complexity Basics

Our first complexity class

Complexity theory is all about classifying problems based on difficulty.

Definition

The complexity class P consists of all decision problems that can be solved
by an algorithm whose worst-case cost is O(nk), for some constant k, and
where n is the bit-length of the input instance.

This is the “polynomial-time” class. Can you name some members?

SI 335 (USNA) Unit 6 Spring 2015 11 / 42

Complexity Basics

Nice properties of P

When we just worry about polynomial-time, we can be really lazy in
analysis!

Polynomial-time is closed under:

Addition: nk + n` ∈ O(nmax(k,`))
In terms of algorithms: one after the other.

Multiplication: nk · n` ∈ O(nk+`)
In terms of algorithms: calls within loops.

Composition: nk ◦ n` ∈ O(nk`)
In terms of algorithms: replace every primitive op. with a function call

SI 335 (USNA) Unit 6 Spring 2015 12 / 42

Certificates and NP

Certificates

A certificate for a decision problem is some kind of digital “proof” that the
answer is YES.

The certificate is usually what the output would be from the
“computational version”.

Examples (informally):

Integer factorization

Minimum vertex cover

Shortest path

Longest path

SI 335 (USNA) Unit 6 Spring 2015 13 / 42

Certificates and NP

Verifiers

A verifier is an algorithm that takes:

1 Problem instance (input) for some decision problem

2 An alleged certificate that the answer is YES

and returns YES iff the certificate is legit.

Principle comes from “guess-and-check” algorithms:

Finding the answer is tough, but

checking the answer is easy.

We can write fast verifiers for hard problems!

SI 335 (USNA) Unit 6 Spring 2015 14 / 42

Certificates and NP

Our second complexity class

Definition

The complexity class NP consists of all decision problems that have can
be verified in polynomial-time in the bit-size of the original problem input.

Steps for an NP-proof:

1 Define a notion of certificate

2 Prove that certificates have length O(nk) for some constant k

3 Come up with a verifier algorithm

4 Prove that the algorithm runs in time O(nk)
for some (other) constant k

SI 335 (USNA) Unit 6 Spring 2015 15 / 42

Certificates and NP

VC is in NP

VC(G,k): “Does G have a vertex cover with at most k vertices?”

1 Certificate:

2 Certificate size:

3 Verifier algorithm:

4 Algorithm cost:

SI 335 (USNA) Unit 6 Spring 2015 16 / 42

Certificates and NP

FACT is in NP

FACT(N,k): “Does N have a prime factor less than k?”

1 Certificate:

2 Certificate size:

3 Verifier algorithm:

4 Algorithm cost:

SI 335 (USNA) Unit 6 Spring 2015 17 / 42

Certificates and NP

How to get rich

The BIG question is: Does P equal NP?

The Clay Institute offers $1,000,000 for a proof either way.

What you would need to prove P = NP:

What you would need to prove P 6= NP:

In a nutshell: Is guess-and-check ever the best algorithm?

SI 335 (USNA) Unit 6 Spring 2015 18 / 42

Certificates and NP

Alternate meaning of NP

Meaning of the name NP: “Non-deterministic polynomial time”

Non-deterministic Turing machine

Turing machine with (possibly) multiple transitions for the same
current state and current tape symbol

Like a computer program with “guesses”

Connection to randomness?

Why is this equivalent to our definition with certificates and verifiers?

SI 335 (USNA) Unit 6 Spring 2015 19 / 42

Reductions

Reductions

Recall that a reduction from problem A to problem B is a way of solving
problem A using any algorithm for problem B.
Then we know that A is not more difficult than B.

Formally, a reduction from A to B:

1 Takes an instance of problem A as input

2 Uses this to create m instances of problem B

3 Uses the solutions to those m problem B’s to recover the solution for
the original problem A

SI 335 (USNA) Unit 6 Spring 2015 20 / 42

Reductions

Example Linear-Time Reduction

Two problems:

MMUL(A,B): Compute the product of matrices A and B

MSQR(A,B): Compute the matrix square A2

Show that the inherent difficulty of MMUL and MSQR is the same.

SI 335 (USNA) Unit 6 Spring 2015 21 / 42

Reductions

Polynomial-Time Reduction

Ingredients for analyzing a reduction:
(All will be functions of n, the input size for problem A)

Number (m) of problem B instances created

Maximum bit-size of a problem B instance

Amount of extra work to do the actual reduction.

Polynomial-time reduction: all three ingredients are O(nk)
(Often m = 1, sometimes called a “strong reduction”.)

We write A ≤P B, meaning
“A is polynomial-time reducible to B”.

SI 335 (USNA) Unit 6 Spring 2015 22 / 42

Reductions

Formal Problem Definitions
Page 3

Minimum Hitting Set: HITSET(L,k)

Input: List L of sets S1, S2, ... , Sm, integer k .
Output: Is there a set H with size at most k such that every Si ∩H is not
empty?

Input size and encoding:

HAMCYCLE(G)

Input: Graph G = (V , E)
Output: Does G have a cycle that touches every vertex?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2015 23 / 42

Reductions

VC reduces to HITSET

SI 335 (USNA) Unit 6 Spring 2015 24 / 42

Reductions

HAMCYCLE reduces to LONGPATH

SI 335 (USNA) Unit 6 Spring 2015 25 / 42

NP-Completeness

Completeness

Definition

A problem B is NP-hard if A ≤P B for every problem A ∈ NP.

Informally: NP-hard means “at least as difficult as every problem in NP”

Definition

A problem B is NP-complete if B is NP-hard and B ∈ NP.

What is the hardest problem in NP?

SI 335 (USNA) Unit 6 Spring 2015 26 / 42

NP-Completeness

An easy NP-hard proof

Theorem: The halting problem is NP-hard.

Proof:

SI 335 (USNA) Unit 6 Spring 2015 27 / 42

NP-Completeness

Formal Problem Definitions
Page 4

Circuit Satisfiability: CIRCUIT-SAT(C)

Input: Boolean circuit C with AND, OR, and NOT gates,
m inputs, and one output.
Output: Is there a setting of the m inputs that makes the output true?

Input size and encoding:

3-SAT(F)

Input: Boolean formula F in “conjunctive normal form”
(product of sums), with three literals (terms) in every sum (clause):
F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ ¬x4) ∧ · · ·
Output: Can we assign T/F to the xi ’s to make the formula true?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2015 28 / 42

NP-Completeness

Modeling programs as circuits
Remember this simple model of a computer?

Current
state

Combinational
circuit

Next
state

State contains PC, registers, program, memory
Size is linear in input size and program runtime

Combinational is a circuit (AND, OR, and NOT gates)
for ALUs, MUXes, control, shifts, adders, etc.
Size is polynomial in size of state.

Lemma

Any decision problem with a polynomial-time algorithm
can be simulated by a polynomial-size boolean circuit.

SI 335 (USNA) Unit 6 Spring 2015 29 / 42

NP-Completeness

CIRCUIT-SAT is NP-hard

SI 335 (USNA) Unit 6 Spring 2015 30 / 42

NP-Completeness

NP-Completeness

Theorem

CIRCUIT-SAT is NP-complete.

Proof: All that’s left is to show CIRCUIT-SAT ∈ NP.

We only have to do this kind of proof once (why?)

Will this help us prove P 6= NP?

SI 335 (USNA) Unit 6 Spring 2015 31 / 42

More NP-Complete Problems

3-SAT

We want to reduce CIRCUIT-SAT to 3-SAT.

Idea: Every wire in the circuit becomes a variable.

Gate Formula

x
y z (¬x∨¬y∨z)∧(x∨¬z)∧(y∨¬z)

x
y z (x∨y∨¬z)∧(¬x∨z)∧(¬y∨z)

x z (x ∨ z) ∧ (¬x ∨ ¬z)

What do these clauses ensure?

What other clause do we need to add?

SI 335 (USNA) Unit 6 Spring 2015 32 / 42

More NP-Complete Problems

VC

Reduce 3-SAT to VC.

SI 335 (USNA) Unit 6 Spring 2015 33 / 42

More NP-Complete Problems

Properties of NP-Complete Problems

There are many known NP-complete problems.

We have seen: LONGPATH, VC, HITSET, HAMCYCLE, CIRCUIT-SAT, 3-SAT.

What’s needed to prove a new problem is NP-complete:

Note: All have one-sided verifiers (can’t verify NO answer!)

What about FACT?

SI 335 (USNA) Unit 6 Spring 2015 34 / 42

More NP-Complete Problems

Frontiers of Complexity Theory

Big open questions:

Does P = NP? (Probably not)

Is FACT NP-complete? (Probably not)

Is FACT in P? (Hopefully not!)

Do true one-way functions exist? (Not if P = NP)

Can quantum computers solve NP-hard problems? (Probably not)

Where does randomness fit in?

SI 335 (USNA) Unit 6 Spring 2015 35 / 42

Traveling Salesman Problem

Traveling Salesman Problem

TSP Definition

Input: Graph G = (V , E)
Output: The shortest cycle that includes every vertex exactly once, or
FAIL if none exist.

Classic NP-hard problem

Many important applications

The worst-case is hard — so what can we do?

SI 335 (USNA) Unit 6 Spring 2015 36 / 42

Traveling Salesman Problem

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

b

d

a

e

c

2

2

2

5

4

5

4

5

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 6 Spring 2015 37 / 42

Traveling Salesman Problem

Branch and Bound

How to compute the optimal TSP?

1 Pick a starting vertex

2 Explore every path, depth-first

3 Return the least-length Hamiltonian cycle

This is really slow (of course!)

Branch and bound idea:

Define a quick lower bound on remaining subproblem (MST!)

Stop exploring when the lower bound exceeds the best-so-far

SI 335 (USNA) Unit 6 Spring 2015 38 / 42

Traveling Salesman Problem

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP

Edge lengths “obey the triangle inequality”:
w(a, b) + w(b, c) ≥ w(a, c)∀a, b, c ∈ V

What does this mean about the graph?

Euclidean TSP

Graph can be drawn on a 2-dimensional map.

Edge weights are just distances!

(Sub-case of Metric TSP)

SI 335 (USNA) Unit 6 Spring 2015 39 / 42

Traveling Salesman Problem

Approximating Metric TSP

Idea: Turn any MST into a TSP tour.

b

d

a

e

c

2

2

2

5

4

5

4

5

How good is the approximation?

SI 335 (USNA) Unit 6 Spring 2015 40 / 42

Traveling Salesman Problem

Greedy TSP
Greedy strategies:

Nearest neighbor

Smallest “good” edge

b

d

a

e

c

2

2

2

5

4

5

4

5

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 6 Spring 2015 41 / 42

Traveling Salesman Problem

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:

Take a cycle with
(a, b) and (c , d)

Replace with
(a, c) and (b, d)

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 6 Spring 2015 42 / 42

