
Intro/Review

Basic Terminology

REVIEW from Data Structures!

G = (V ,E); V is set of n nodes, E is set of m edges

Node or Vertex: a point in a graph

Edge: connection between nodes

Weight: numerical cost or length of an edge

Direction: arrow on an edge

Path: sequence (u0, u1, ... , uk) with every (ui−1, ui) ∈ E

Cycle: path that starts and ends at the same node

SI 335 (USNA) Unit 5 Spring 2015 1 / 46

Intro/Review

Examples

Roads and intersections

People and relationships

Computers in a network

Web pages and hyperlinks

Makefile dependencies

Scheduling tasks and constraints

(many more!)

SI 335 (USNA) Unit 5 Spring 2015 2 / 46

Intro/Review

Graph Representations

Adjacency Matrix: n × n matrix of weights.
A[i][j] has the weight of edge (ui , uj).
Weights of non-existent edges usually 0 or ∞.
Size:

Adjacency Lists: Array of n lists;
each list has node-weight pairs for the *outgoing edges* of that node.
Size:

Implicit: Adjacency lists computed on-demand.
Can be used for infinite graphs!

Unweighted graphs have all weights either 0 or 1.
Undirected graphs have every edge in both directions.

SI 335 (USNA) Unit 5 Spring 2015 3 / 46

Intro/Review

Simple Example

Adjacency Matrix:

a b c d e

a

b

c

d

e

Adjacency List:

SI 335 (USNA) Unit 5 Spring 2015 4 / 46

Intro/Review

Graph Search

1 Initialize fringe with starting vertex

2 Remove next unvisited vertex from fringe

3 Mark that node as visited

4 Add all its neighbors to the fringe

5 Repeat 2-4 until fringe is empty

SI 335 (USNA) Unit 5 Spring 2015 5 / 46

Intro/Review

Search algorithms you know

The previous template covers many algorithms:

Depth-first search

Breadth-first search

Dijkstra’s Algorithm

SI 335 (USNA) Unit 5 Spring 2015 6 / 46

Intro/Review

Dijkstra example

a

b

6

c
6

d
3

2

e

4

5
1

4

SI 335 (USNA) Unit 5 Spring 2015 7 / 46

Intro/Review

All-Pairs Shortest Paths

Problem: All-Pairs Shortest Paths

Input: A graph G = (V ,E), weighted, and possibly directed.

Output: Shortest path between every pair of vertices in V

First idea: Run Dijkstra’s algorithm from every vertex.
Cost:

SI 335 (USNA) Unit 5 Spring 2015 8 / 46

Intro/Review

Dynamic Programming Solution

Key idea: Keep overwriting shortest paths, using the same memory

This returns a matrix of ALL shortest path lengths at once!

def FloydWarshall(AM):

L = copy(AM)

n = len(AM)

for k in range(0, n):

for i in range(0, n):

for j in range(0, n):

L[i][j] = min(L[i][j],

L[i][k] + L[k][j]

)

return L

SI 335 (USNA) Unit 5 Spring 2015 9 / 46

a

c

1

f

6

d

6

e

5
4

b

1

1

2

2

a b c d e f

a

b

c

d

e

f

Intro/Review

Analysis of Floyd-Warshall

Time:

Space:

Advantages:

SI 335 (USNA) Unit 5 Spring 2015 11 / 46

Transitive Closure

Transitive Closure

Examples of reachability questions:

Is there any way out of a maze?

Is there a flight plan from one airport another?

Can you tell me a is greater than b without a direct comparison?

Precomputation/query formulation: Same graph, many reachability
questions.

Transitive Closure Problem

Input: A graph G = (V ,E), unweighted, possibly directed
Output: Whether u is reachable from v , for every u, v ∈ V

SI 335 (USNA) Unit 5 Spring 2015 12 / 46

Transitive Closure

TC with APSP

One vertex is reachable from another if the shortest path isn’t infinite.

Therefore transitive closure can be solved with repeated Dijkstra’s or
Floyd-Warshall. Cost will be Θ(n3).

Why might we be able to beat this?

SI 335 (USNA) Unit 5 Spring 2015 13 / 46

Transitive Closure

Another Dynamic Solution

What if every path can only have at most k edges?

Let Lk be the reachability matrix using only k-length paths at most.

Base case: k = 1, then L1 = A, the adjacency matrix itself!

Recursive step: A length-(k + 1) path exists, if there is a length-k
path, followed by a single edge.

Termination: Every path has length at most n − 1.
So Ln−1 is the final answer.

SI 335 (USNA) Unit 5 Spring 2015 14 / 46

Transitive Closure

Boolean Arithmetic

Update step: Lk+1[i , j] =

Boolean Algebra

The + operation becomes ∨
The · operation becomes ∧

Update step becomes:

SI 335 (USNA) Unit 5 Spring 2015 15 / 46

Transitive Closure

TC with Boolean Matrix Multiplication

We start with
T0 =
T1 =

We want to compute Tn−1 =

How to do each multiplication?

SI 335 (USNA) Unit 5 Spring 2015 16 / 46

Transitive Closure

The most amazing connection

(Pay attention. Minds will be blown in 3. . . 2. . . 1. . .)

SI 335 (USNA) Unit 5 Spring 2015 17 / 46

Greedy Algorithms

Optimization Problems

An optimization problem is one where there are many solutions,
and we have to find the “best” one.

Examples we have seen:

Optimal solution can often be made as a series of “moves”
(Moves can be parts of the answer, or general decisions)

SI 335 (USNA) Unit 5 Spring 2015 18 / 46

Greedy Algorithms

Greedy Design Paradigm

A greedy algorithm solves an optimization problem
by a sequence of “greedy moves”.

Greedy moves:

Are based on “local” information

Don’t require “looking ahead”

Should be fast to compute!

Might not lead to optimal solutions

Example: Counting change

SI 335 (USNA) Unit 5 Spring 2015 19 / 46

Greedy Algorithms

Appointment Scheduling

Problem

Given n requests for EI appointments, each with start and end time,
how to schedule the maximum number of appointments?

For example:

Name Start End

Billy 8:30 9:00
Susan 9:00 10:00

Brenda 8:00 8:20
Aaron 8:55 9:05
Paul 8:15 8:45
Brad 7:55 9:45
Pam 9:00 9:30

SI 335 (USNA) Unit 5 Spring 2015 20 / 46

Greedy Algorithms

Greedy Scheduling Options

How should the greedy choice be made?

1 First come, first served

2 Shortest time first

3 Earliest finish first

Which one will lead to optimal solutions?

SI 335 (USNA) Unit 5 Spring 2015 21 / 46

Greedy Algorithms

Proving Greedy Strategy is Optimal

Two things to prove:

1 Greedy choice is always part of an optimal solution

2 Rest of optimal solution can be found recursively

SI 335 (USNA) Unit 5 Spring 2015 22 / 46

Spanning Trees

Back to graphs
Challenge: Connect a network using a minimal amount of wiring.

a

c

1

f

6

d

6

e

5
4

b

1

1

2

2

SI 335 (USNA) Unit 5 Spring 2015 23 / 46

Spanning Trees

MSTs

Recall:

A tree is a connected graph with no cycles.

A tree with n vertices always has n − 1 edges, exactly.

Spanning tree: a tree within a larger graph, that includes all the vertices

Minimum spanning tree: A spanning tree with the least possible total
edge weight

SI 335 (USNA) Unit 5 Spring 2015 24 / 46

Spanning Trees

Prim’s Algorithm

A greedy algorithm for MST.

1 Start at any vertex. That’s your initial tree T

2 Add the least-weight edge from T to the rest of the graph.

3 Keep going until T has n vertices.

SI 335 (USNA) Unit 5 Spring 2015 25 / 46

Spanning Trees

Prim’s Example

What algorithm does this remind you of?

SI 335 (USNA) Unit 5 Spring 2015 26 / 46

Spanning Trees

Correctness of Prim’s algorithm

Theorem

For any vertex v in a graph G, the MST of G always contains v ’s
least-weight neighboring edge.

SI 335 (USNA) Unit 5 Spring 2015 27 / 46

Spanning Trees

Analysis of Prim’s algorithm

Which data structures should we use?

How many times are each operation performed?

Total cost:

SI 335 (USNA) Unit 5 Spring 2015 28 / 46

Spanning Trees

Kruskal’s Algorithm

A different greedy algorithm for the same problem!

1 Start with your tree T being empty

2 Add the least-weight edge in G that doesn’t introduce a cycle in T

3 Repeat!

SI 335 (USNA) Unit 5 Spring 2015 29 / 46

Spanning Trees

Kruskal’s Example

SI 335 (USNA) Unit 5 Spring 2015 30 / 46

Spanning Trees

Disjoint-set data structure

How to keep track of the “connected components” of T?

Disjoint Set ADT

create(items):

find(x):

union(x,y):

Data structure ideas?

SI 335 (USNA) Unit 5 Spring 2015 31 / 46

Spanning Trees

Analysis of Kruskal’s algorithm

Which data structures should we use?

How many times are each operation performed?

Total cost:

SI 335 (USNA) Unit 5 Spring 2015 32 / 46

Spanning Trees

Another paradigm?

Prim’s and Kruskal’s utilize the Greedy paradigm.

They also depend heavily on data structures.

How would you make these algorithms faster?

SI 335 (USNA) Unit 5 Spring 2015 33 / 46

Matchings

Matchings

Pairing up people or resources is a common task.

We can model this task with graphs:

Maximum Matching Problem

Given an undirected, unweighted graph G = (V ,E), find a subset of edges
M ⊆ E such that:

Every vertex touches at most one edge in M

The size of M is as large as possible

Greedy Algorithm: Repeatedly choose any edge that goes between two
unpaired vertices and add it to M.

SI 335 (USNA) Unit 5 Spring 2015 34 / 46

Matchings

Greedy matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2015 35 / 46

Matchings

Maximum matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2015 36 / 46

Matchings

How good is the greedy solution?

Theorem: The optimal solution is at most times the size of one
produced by the greedy algorithm.

Proof:

SI 335 (USNA) Unit 5 Spring 2015 37 / 46

Hard Graph Problems

Vertex Cover
Problem: Find the smallest set of vertices that touches every edge.

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2015 38 / 46

Hard Graph Problems

Approximating VC

Approximation algorithm for minimal vertex cover:

1 Find a greedy maximal matching

2 Take both vertices in every edge in the matching

Why is this always a vertex cover?

How good is the approximation?

SI 335 (USNA) Unit 5 Spring 2015 39 / 46

Hard Graph Problems

Traveling Salesman Problem

TSP Definition

Input: Graph G = (V ,E)
Output: The shortest cycle that includes every vertex exactly once, or
FAIL if none exist.

Sample applications:

How do you confront a problem that seems impossibly hard?

SI 335 (USNA) Unit 5 Spring 2015 40 / 46

Hard Graph Problems

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

b

d

a

e

c

2

2

2

5

4

5

4

5

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 5 Spring 2015 41 / 46

Hard Graph Problems

Branch and Bound

How to compute the optimal TSP?

1 Pick a starting vertex

2 Explore every path, depth-first

3 Return the least-length Hamiltonian cycle

This is really slow (of course!)

Branch and bound idea:

Define a quick lower bound on remaining subproblem (MST!)

Stop exploring when the lower bound exceeds the best-so-far

SI 335 (USNA) Unit 5 Spring 2015 42 / 46

Hard Graph Problems

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP

Edge lengths “obey the triangle inequality”:
w(a, b) + w(b, c) ≥ w(a, c)∀a, b, c ∈ V

What does this mean about the graph?

Euclidean TSP

Graph can be drawn on a 2-dimensional map.

Edge weights are just distances!

(Sub-case of Metric TSP)

SI 335 (USNA) Unit 5 Spring 2015 43 / 46

Hard Graph Problems

Approximating Metric TSP

Idea: Turn any MST into a TSP tour.

b

d

a

e

c

2

2

2

5

4

5

4

5

How good is the approximation?

SI 335 (USNA) Unit 5 Spring 2015 44 / 46

Hard Graph Problems

Greedy TSP
Greedy strategies:

Nearest neighbor

Smallest “good” edge

b

d

a

e

c

2

2

2

5

4

5

4

5

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 5 Spring 2015 45 / 46

Hard Graph Problems

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:

Take a cycle with
(a, b) and (c , d)

Replace with
(a, c) and (b, d)

b

d

a

e

c

2

2

2

5

4

5

4

5

SI 335 (USNA) Unit 5 Spring 2015 46 / 46

