	Intro/Review		
Basic Terminology			
REVIEW from Data Struct	:ures!		
G = (V, E); V is set of n	nodes, E is set of m edg	ges	
• Node or Vertex: a po	oint in a graph		
• Edge: connection betw	ween nodes		
Weight: numerical co	ost or length of an edge		
• Direction: arrow on a	an edge		
• Path : sequence (u_0, u_0)	u_1, \ldots, u_k) with every (u_k)	$_{-1}, u_i) \in E$	
• Cycle: path that start	ts and ends at the same	node	
• Cycle: path that start	ts and ends at the same	node Spring 2015	1 / 46
• Cycle: path that start	ts and ends at the same	node Spring 2015	1 / 46
• Cycle: path that start	Unit 5	node Spring 2015	1 / 46
• Cycle: path that start	Unit 5	node Spring 2015	1 / 46
• Cycle: path that start	Unit 5	node Spring 2015	1 / 46
• Cycle: path that start	Unit 5	node Spring 2015	1 / 46
• Cycle: path that start SI 335 (USNA) Examples • Roads and intersection	Unit 5 Unit 5 Intro/Review	node Spring 2015	1 / 46
 Cycle: path that start SI 335 (USNA) Examples Roads and intersection People and relationship 	Unit 5 Unit 5 Intro/Review	node Spring 2015	1 / 46
 Cycle: path that start SI 335 (USNA) Examples Roads and intersection People and relationship Computers in a network 	Unit 5 Unit 5 Intro/Review	node Spring 2015	1 / 46

- Makefile dependencies
- Scheduling tasks and constraints
- (many more!)

SI 335 (USNA)

Unit 5

Spring 2015 2 / 46

Intro/Review Graph Representations • Adjacency Matrix: $n \times n$ matrix of weights. A[i][j] has the weight of edge (u_i, u_j) . Weights of non-existent edges usually 0 or ∞ . Size: • Adjacency Lists: Array of *n* lists; each list has node-weight pairs for the *outgoing edges* of that node. Size: • Implicit: Adjacency lists computed on-demand. Can be used for infinite graphs! Unweighted graphs have all weights either 0 or 1. Undirected graphs have every edge in both directions. SI 335 (USNA) Unit 5 Spring 2015 3 / 46

Unit 5

SI 335 (USNA)

Unit 5

Spring 2015 8 / 46

Dynamic Programming Solution

Key idea: Keep overwriting shortest paths, using the same memory

Intro/Review

This returns a matrix of ALL shortest path lengths at once!

Transitive Closure

Transitive Closure

Examples of reachability questions:

- Is there any way out of a maze?
- Is there a flight plan from one airport another?
- Can you tell me *a* is greater than *b* without a direct comparison?

 $\label{eq:precomputation} Precomputation/query\ formulation:\ Same\ graph,\ many\ reachability\ questions.$

Transitive Closure Problem

Input: A graph G = (V, E), unweighted, possibly directed **Output**: Whether *u* is reachable from *v*, for every $u, v \in V$

TC with APSP		
One vertex is reachable f	rom another if the shortes	st path isn't infinite.
T I C I		
Therefore transitive closu Floyd-Warshall. Cost will	The can be solved with rep be $\Theta(n^3)$.	eated Dijkstra's or
Why <i>might</i> we be able to	beat this?	
SI 335 (USNA)	Unit 5	Spring 2015 13 / 46
	Transitive Closure	
Another Dynamic C	alution	
Another Dynamic S	olution	
What if every path can o	nly have at most k edges	?
Let L_k be the reachability	y matrix using only <i>k</i> -leng	th paths at most.
	, , , , ,	
• Base case: $k = 1$, t	then $L_1=A$, the adjacent	cy matrix itself!
 Recursive step: A l path, followed by a s 	length(k+1) path exists single edge.	, if there is a length- <i>k</i>
		_
Iermination: Every	path has length at most	n-1.
So L_{n-1} is the final	answer.	
SI 335 (USNA)	Unit 5	Service 2015 14 / 46
		5pring 2015 14 / 40
		Spring 2015 14 / 40
	Tracities Channel	Spring 2013 14 / 40
	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation becomes the state of the	Transitive Closure : comes ∨ pomes ∧	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec • The \cdot operation become	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec • The \cdot operation beco Update step becomes:	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec • The \cdot operation beco Update step becomes:	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation beco • The \cdot operation beco Update step becomes:	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec • The \cdot operation beco Update step becomes:	Transitive Closure	3pring 2013 14 / 40
Boolean Arithmetic Update step: $L_{k+1}[i, j] =$ Boolean Algebra • The + operation bec • The \cdot operation beco Update step becomes:	Transitive Closure	3pring 2013 14 / 40

	Transitive Closure		
TC with Boolean Ma	atrix Multiplication		
We start with			
$T_0 = T_1 =$			
M_{0} want to compute T	_		
We want to compute T_{n-}	_1 =		
How to do each multiplic	ation?		
SI 335 (USNA)	Unit 5	Spring 2015 16	/ 46
	Transitive Closure		
The most amazing c	connection		
(Pay attention. Minds wi	II be blown in 321	.)	
SI 335 (USNA)	Unit 5	Spring 2015 17	/ 46
SI 335 (USNA)	Unit 5	Spring 2015 17	/ 46
SI 335 (USNA)	Unit 5 Greedy Algorithms	Spring 2015 17	/ 46
SI 335 (USNA)	Unit 5 Greedy Algorithms MS	Spring 2015 17	/ 46
SI 335 (USNA) Optimization Proble	Unit 5 Greedy Algorithms MS	Spring 2015 17	/ 46
SI 335 (USNA) Optimization Proble	Unit 5 Greedy Algorithms MS	Spring 2015 17	/ 46
SI 335 (USNA) Optimization Proble An optimization problem and we have to find the '	Unit 5 Greedy Algorithms MS is one where there are ma 'best" one.	Spring 2015 17	/ 46
SI 335 (USNA) Optimization Proble An optimization problem and we have to find the '	Unit 5 Greedy Algorithms MS is one where there are ma 'best'' one.	Spring 2015 17	/ 46
SI 335 (USNA) Optimization Proble An optimization problem and we have to find the ' Examples we have seen:	Unit 5 Greedy Algorithms MS is one where there are ma 'best'' one.	Spring 2015 17 .	/ 46

Optimal solution can often be made as a series of "moves" (Moves can be parts of the answer, or general decisions)

Greedy	y Algorithms		
Greedy Design Paradig	m		
A greedy algorithm solves an	optimization problem		
by a sequence of "greedy mo	ves".		
Greedy moves:			
 Are based on "local" inf 	ormation		
 Don't require "looking a 	head"		
 Should be fast to compute 	ıte!		
 Might not lead to optim 	al solutions		
Example: Counting change			
SI 335 (USNA)	Unit 5	Spring 2015	19 / 46
Greedy	y Algorithms		

Appointment Scheduling

Problem

Given n requests for El appointments, each with start and end time, how to schedule the maximum number of appointments?

For example:

	Name	Start	End		
	Billy	8:30	9:00	-	
	Susan	9:00	10:00		
	Brenda	8:00	8:20		
	Aaron	8:55	9:05		
	Paul	8:15	8:45		
	Brad	7:55	9:45		
	Pam	9:00	9:30		
SI 335 (USNA)		Unit 5		Spring 2015	20 / 46

Spanning Trees

 MSTs

Recall:

- A tree is a connected graph with no cycles.
- A tree with n vertices always has n-1 edges, exactly.

 $\ensuremath{\textbf{Spanning tree:}}$ a tree within a larger graph, that includes all the vertices

Spanning Trees

Correctness of Prim's algorithm

Theorem

For any vertex v in a graph G, the MST of G always contains v's least-weight neighboring edge.

	Spanning Trees	
Analysis of Prim's alc	orithm	
vvnich data structures	s should we use?	
 How many times are e 	each operation performed?	
• Total cost:		
SI 335 (USNA)	Unit 5	Spring 2015 28 / 46
	Spanning Trees]
17 1 11 11		
Kruskal's Algorithm		
A different greedy algorith	m for the same problem!	
A different greedy algorith	m for the same problem!	
A different greedy algorith	m for the same problem!	
A different greedy algorithm Start with your tree 7 Add the least weight of	m for the same problem! Γ being empty	roduce a cycle in T
A different greedy algorith Start with your tree 7 Add the least-weight of Beneatl	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight e 3 Repeat!	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int	roduce a cycle in $ au$
A different greedy algorith Start with your tree 7 Add the least-weight e Repeat!	m for the same problem! Γ being empty edge in G that doesn't int	roduce a cycle in T
A different greedy algorith Start with your tree 7 Add the least-weight e Repeat!	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int	roduce a cycle in T
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight e 3 Repeat!	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int	roduce a cycle in <i>T</i>
A different greedy algorithm Start with your tree 7 Add the least-weight e Repeat!	m for the same problem! Γ being empty edge in G that doesn't int	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight e 3 Repeat!	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight of 3 Repeat! SI 335 (USNA)	m for the same problem! Γ being empty edge in G that doesn't int	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat!	m for the same problem! Γ being empty edge in G that doesn't int _{Unit 5}	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight e 3 Repeat! SI 335 (USNA)	m for the same problem! Γ being empty edge in G that doesn't int Unit 5	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight of 3 Repeat! SI 335 (USNA)	m for the same problem! Γ being empty edge in G that doesn't int Unit 5	roduce a cycle in <i>T</i>
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! <u>SI 335 (USNA)</u>	m for the same problem! Γ being empty edge in G that doesn't int Unit 5	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight of 3 Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! Γ being empty edge in <i>G</i> that doesn't int Unit 5	roduce a cycle in <i>T</i>
A different greedy algorith 1 Start with your tree 7 2 Add the least-weight of 3 Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! Γ being empty edge in G that doesn't int Unit 5	roduce a cycle in T Spring 2015 29 / 46
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! <u>SI 335 (USNA)</u> Kruskal's Example	m for the same problem! Γ being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! Γ being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in T Spring 2015 29 / 46
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! Γ being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! Γ being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i>
A different greedy algorith Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i>
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i> Spring 2015 29 / 46
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i>
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example 10 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i>
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in <i>T</i>
A different greedy algorithm Start with your tree 7 Add the least-weight of Repeat! SI 335 (USNA) Kruskal's Example	m for the same problem! T being empty edge in G that doesn't int Unit 5 Spanning Trees	roduce a cycle in T Spring 2015 29 / 46

SI 335 (USNA)

Unit 5

Spring 2015 30 / 46

	Spanning Trees		
Disjoint-set data stru	icture		
How to keep track of the	"connected components" of T?		
Disjoint Set ADT • create(items): • find(x): • union(x,y):			
Data structure ideas?			
SI 335 (USNA)	Unit 5	Spring 2015	31 / 46
	Spanning Trees		
Analysis of Kruskal's	algorithm		
 Which data structure 	s should we use?		
• How many times are	each operation performed?		
• Total cost:	11-12 5	Saving 2015	20 / 46
SI 333 (USINA)	Unit 5	Spring 2015	32 / 40
	Spanning Trees		
Another paradigm?			
Prim's and Kruskal's utiliz	e the Greedy paradigm.		
They also depend heavily	on data structures .		
How would you make thes	e algorithms faster?		
SI 335 (USNA)	Unit 5	Spring 2015	33 / 46

Unit 5

Spring 2015 34 / 46

	Matchings		
How good is the	e greedy solution?		
Theorem : The opt produced by the gre	imal solution is at most times eedy algorithm.	the size of one	
Proof:			
SI 335 (USNA)	Unit 5	Spring 2015	37 / 46

Hard Graph Problems

Vertex Cover

Problem: Find the smallest set of vertices that touches every edge.

Hard Graph Problems

Approximating VC Approximation algorithm for minimal vertex cover: Find a greedy maximal matching
Take both vertices in every edge in the matching

Why is this always a vertex cover? How good is the approximation? SI 335 (USNA)
Unit 5
Spring 2015 39 / 46

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

Hard Graph Problems

42 / 46

Idea: Turn any MST into a TSP tour.

