
Intro/Review

Basic Terminology

REVIEW from Data Structures!

G = (V ,E ); V is set of n nodes, E is set of m edges

Node or Vertex: a point in a graph

Edge: connection between nodes

Weight: numerical cost or length of an edge

Direction: arrow on an edge

Path: sequence (u0, u1, ... , uk) with every (ui−1, ui ) ∈ E

Cycle: path that starts and ends at the same node
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Intro/Review

Examples

Roads and intersections

People and relationships

Computers in a network

Web pages and hyperlinks

Makefile dependencies

Scheduling tasks and constraints

(many more!)
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Intro/Review

Graph Representations

Adjacency Matrix: n × n matrix of weights.
A[i ][j ] has the weight of edge (ui , uj).
Weights of non-existent edges usually 0 or ∞.
Size:

Adjacency Lists: Array of n lists;
each list has node-weight pairs for the *outgoing edges* of that node.
Size:

Implicit: Adjacency lists computed on-demand.
Can be used for infinite graphs!

Unweighted graphs have all weights either 0 or 1.
Undirected graphs have every edge in both directions.
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Intro/Review

Simple Example

Adjacency Matrix:

a b c d e

a

b

c

d

e

Adjacency List:
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Intro/Review

Graph Search

1 Initialize fringe with starting vertex

2 Remove next unvisited vertex from fringe

3 Mark that node as visited

4 Add all its neighbors to the fringe

5 Repeat 2-4 until fringe is empty
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Intro/Review

Search algorithms you know

The previous template covers many algorithms:

Depth-first search

Breadth-first search

Dijkstra’s Algorithm

SI 335 (USNA) Unit 5 Spring 2015 6 / 46



Intro/Review

Dijkstra example
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Intro/Review

All-Pairs Shortest Paths

Problem: All-Pairs Shortest Paths

Input: A graph G = (V ,E ), weighted, and possibly directed.

Output: Shortest path between every pair of vertices in V

First idea: Run Dijkstra’s algorithm from every vertex.
Cost:
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Intro/Review

Dynamic Programming Solution

Key idea: Keep overwriting shortest paths, using the same memory

This returns a matrix of ALL shortest path lengths at once!

def FloydWarshall(AM):

L = copy(AM)

n = len(AM)

for k in range(0, n):

for i in range(0, n):

for j in range(0, n):

L[i][j] = min( L[i][j],

L[i][k] + L[k][j]

)

return L
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Intro/Review

Analysis of Floyd-Warshall

Time:

Space:

Advantages:
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Transitive Closure

Transitive Closure

Examples of reachability questions:

Is there any way out of a maze?

Is there a flight plan from one airport another?

Can you tell me a is greater than b without a direct comparison?

Precomputation/query formulation: Same graph, many reachability
questions.

Transitive Closure Problem

Input: A graph G = (V ,E ), unweighted, possibly directed
Output: Whether u is reachable from v , for every u, v ∈ V
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Transitive Closure

TC with APSP

One vertex is reachable from another if the shortest path isn’t infinite.

Therefore transitive closure can be solved with repeated Dijkstra’s or
Floyd-Warshall. Cost will be Θ(n3).

Why might we be able to beat this?
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Transitive Closure

Another Dynamic Solution

What if every path can only have at most k edges?

Let Lk be the reachability matrix using only k-length paths at most.

Base case: k = 1, then L1 = A, the adjacency matrix itself!

Recursive step: A length-(k + 1) path exists, if there is a length-k
path, followed by a single edge.

Termination: Every path has length at most n − 1.
So Ln−1 is the final answer.
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Transitive Closure

Boolean Arithmetic

Update step: Lk+1[i , j ] =

Boolean Algebra

The + operation becomes ∨
The · operation becomes ∧

Update step becomes:
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Transitive Closure

TC with Boolean Matrix Multiplication

We start with
T0 =
T1 =

We want to compute Tn−1 =

How to do each multiplication?
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Transitive Closure

The most amazing connection

(Pay attention. Minds will be blown in 3. . . 2. . . 1. . . )
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Greedy Algorithms

Optimization Problems

An optimization problem is one where there are many solutions,
and we have to find the “best” one.

Examples we have seen:

Optimal solution can often be made as a series of “moves”
(Moves can be parts of the answer, or general decisions)
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Greedy Algorithms

Greedy Design Paradigm

A greedy algorithm solves an optimization problem
by a sequence of “greedy moves”.

Greedy moves:

Are based on “local” information

Don’t require “looking ahead”

Should be fast to compute!

Might not lead to optimal solutions

Example: Counting change
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Greedy Algorithms

Appointment Scheduling

Problem

Given n requests for EI appointments, each with start and end time,
how to schedule the maximum number of appointments?

For example:

Name Start End

Billy 8:30 9:00
Susan 9:00 10:00

Brenda 8:00 8:20
Aaron 8:55 9:05
Paul 8:15 8:45
Brad 7:55 9:45
Pam 9:00 9:30

SI 335 (USNA) Unit 5 Spring 2015 20 / 46

Greedy Algorithms

Greedy Scheduling Options

How should the greedy choice be made?

1 First come, first served

2 Shortest time first

3 Earliest finish first

Which one will lead to optimal solutions?
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Greedy Algorithms

Proving Greedy Strategy is Optimal

Two things to prove:

1 Greedy choice is always part of an optimal solution

2 Rest of optimal solution can be found recursively
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Spanning Trees

Back to graphs
Challenge: Connect a network using a minimal amount of wiring.
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Spanning Trees

MSTs

Recall:

A tree is a connected graph with no cycles.

A tree with n vertices always has n − 1 edges, exactly.

Spanning tree: a tree within a larger graph, that includes all the vertices

Minimum spanning tree: A spanning tree with the least possible total
edge weight

SI 335 (USNA) Unit 5 Spring 2015 24 / 46



Spanning Trees

Prim’s Algorithm

A greedy algorithm for MST.

1 Start at any vertex. That’s your initial tree T

2 Add the least-weight edge from T to the rest of the graph.

3 Keep going until T has n vertices.
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Spanning Trees

Prim’s Example

What algorithm does this remind you of?
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Spanning Trees

Correctness of Prim’s algorithm

Theorem

For any vertex v in a graph G, the MST of G always contains v ’s
least-weight neighboring edge.
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Spanning Trees

Analysis of Prim’s algorithm

Which data structures should we use?

How many times are each operation performed?

Total cost:
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Spanning Trees

Kruskal’s Algorithm

A different greedy algorithm for the same problem!

1 Start with your tree T being empty

2 Add the least-weight edge in G that doesn’t introduce a cycle in T

3 Repeat!
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Spanning Trees

Kruskal’s Example
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Spanning Trees

Disjoint-set data structure

How to keep track of the “connected components” of T?

Disjoint Set ADT

create(items):

find(x):

union(x,y):

Data structure ideas?
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Spanning Trees

Analysis of Kruskal’s algorithm

Which data structures should we use?

How many times are each operation performed?

Total cost:
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Spanning Trees

Another paradigm?

Prim’s and Kruskal’s utilize the Greedy paradigm.

They also depend heavily on data structures.

How would you make these algorithms faster?
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Matchings

Matchings

Pairing up people or resources is a common task.

We can model this task with graphs:

Maximum Matching Problem

Given an undirected, unweighted graph G = (V ,E ), find a subset of edges
M ⊆ E such that:

Every vertex touches at most one edge in M

The size of M is as large as possible

Greedy Algorithm: Repeatedly choose any edge that goes between two
unpaired vertices and add it to M.
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Matchings

Greedy matching example
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Matchings

Maximum matching example
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Matchings

How good is the greedy solution?

Theorem: The optimal solution is at most times the size of one
produced by the greedy algorithm.

Proof:
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Hard Graph Problems

Vertex Cover
Problem: Find the smallest set of vertices that touches every edge.
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Hard Graph Problems

Approximating VC

Approximation algorithm for minimal vertex cover:

1 Find a greedy maximal matching

2 Take both vertices in every edge in the matching

Why is this always a vertex cover?

How good is the approximation?
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Hard Graph Problems

Traveling Salesman Problem

TSP Definition

Input: Graph G = (V ,E )
Output: The shortest cycle that includes every vertex exactly once, or
FAIL if none exist.

Sample applications:

How do you confront a problem that seems impossibly hard?
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Hard Graph Problems

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.
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Hard Graph Problems

Branch and Bound

How to compute the optimal TSP?

1 Pick a starting vertex

2 Explore every path, depth-first

3 Return the least-length Hamiltonian cycle

This is really slow (of course!)

Branch and bound idea:

Define a quick lower bound on remaining subproblem (MST!)

Stop exploring when the lower bound exceeds the best-so-far
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Hard Graph Problems

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP

Edge lengths “obey the triangle inequality”:
w(a, b) + w(b, c) ≥ w(a, c)∀a, b, c ∈ V

What does this mean about the graph?

Euclidean TSP

Graph can be drawn on a 2-dimensional map.

Edge weights are just distances!

(Sub-case of Metric TSP)
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Hard Graph Problems

Approximating Metric TSP

Idea: Turn any MST into a TSP tour.
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How good is the approximation?
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Hard Graph Problems

Greedy TSP
Greedy strategies:

Nearest neighbor

Smallest “good” edge
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Hard Graph Problems

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:

Take a cycle with
(a, b) and (c , d)

Replace with
(a, c) and (b, d)
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