Why Number Theory?

Number Theory

Number Theory is the study of integers and their resulting structures.

Why study it?
@ History: the first true algorithms were number-theoretic.
@ Analysis: We'll learn about new kinds of running times and analyses.
@ Cryptography! Modern cryptosystems rely heavily on this stuff.
@ Computers are always dealing with integers anyway!

S1335 (USNA) Unit 3 Spring 2015 1/ 30

The size of an integer

How big is an integer?

The measure of difficulty for array-based problems was always the size of
the array.

What should it be for an algorithm that takes an integer n?

S1335 (USNA) Unit 3 Spring 2015 2 /30

The size of an integer

Factorization

Classic number theory question: What is the prime factorization of an
integer n?

Recall:
o A prime number is divisible only by 1 and itself.
o Every integer > 1 is either prime or composite.

o Every integer has a unique prime factorization.

It suffices to compute a single prime factor of n.

S1335 (USNA) Unit 3 Spring 2015 3/ 30

The size of an integer

leastPrimeFactor

Input: Positive integer n
Output: The smallest prime p that divides n

def leastPrimeFactor (n):

i =2
while i * i <= n:
if n % i == 0:
return i
i=1i+1

return n

Running time:
Is this fast??

S1335 (USNA) Unit 3 Spring 2015 4 /30

The size of an integer

Polynomial Time

The actual running time, in terms of the size s € ©(log n) of n, is ©(25/?).

Definition
An algorithm runs in polynomial time if its worst-case cost is O(n¢) for
some constant c.

Why do we care? The following is sort of an algorithmic “Moore’s Law":

Cobham-Edmonds Thesis

An algorithm for a computational problem can be feasibly solved on a
computer only if it is polynomial time.

So our integer factorization algorithm is actually really slow!

SI 335 (USNA) Unit 3 Spring 2015 5/30

Modular Arithmetic

Modular Arithmetic

Division with Remainder

For any integers a and m with m > 0, there exist integers g and r with
0 < r < m such that
a=qm-+r.

We write a mod m=r.
Modular arithmetic means doing all computations "mod m".

S1335 (USNA) Unit 3 Spring 2015 6/ 30

Modular Arithmetic

Addition mod 15

+ 10 1 2 3 4 5 6 7 8 9 1011112 13| 14
0| 0 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 | 14
1 1 2 3 4 5 6 7 8 9 100 (11 (12 (13|14] 0
2| 2 3 4 5 6 7 8 9 10111213 |14] O 1
31 3 4 5 6 7 8 9 |10 1112|1314 | 0O 1 2
41 4 5 6 7 8 9 |10 (11 (12 (13|14 | O 1 2 3
51 5 6 7 8 9 | 10|11 |12 |13 |14] 0 1 2 3 4
6| 6 7 8 9 |10 |11 |12 (13|14 | O 1 2 3 4 5
|7 8 9 10 (11 (121314 0 1 2 3 4 5 6
8| 8 9 1011121314 | O 1 2 3 4 5 6 7
91 9 1011|1213 |14 | O 1 2 3 4 5 6 7 8
1010 (11|12 |13 |14 | O 1 2 3 4 5 6 7 8 9
1111112 (13|14 | 0 1 2 3 4 5 6 7 8 9 10
12 (12 (13|14 | 0O 1 2 3 4 5 6 7 8 9 |10 | 11
13 (13 (14| 0 1 2 3 4 5 6 7 8 9 |10 | 11 | 12
141410 1 2 3 4 5 6 7 8 9 | 10| 11|12 | 13
SI335 (USNA) Unit 3 Spring 2015 7/30
Modular Arithmetic
Modular Addition
This theorem is the key for efficient computation:
Theorem
For any integers a, b, m with m > 0,
(a+ b) mod m = (a mod m) + (b mod m) mod m
Subtraction can be defined in terms of addition:
o a—bisjust a+ (—b)
o —b is the number that adds to b to give 0 mod m
o ForO<b<m —bmodm=m-—>b
SI 335 (USNA) Unit 3 Spring 2015 8 /30
Modular Arithmetic
Multiplication mod 15
x| 0| 1 2 3 4 5 6 7 8 9 (10|11 |12 |13 | 14
0[10] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 1 2 3 4 5 6 7 8 9 10 | 11|12 | 13 | 14
2101 2 4 6 8 10 | 12 | 14 1 3 5 7 9 11 | 13
310 3 6 9 (12] 0 3 6 9 12| 0 3 6 9 |12
4101 4 8 [12| 1 5 9 [13| 2 6 |10 |14 | 3 7111
510 5 |10] 0 5 10| 0 5 110| 0 5 10| 0 5 | 10
610 6 |12 3 9 0 6 | 12| 3 9 0 6 | 12| 3 9
710 7 |14 6 (13| 5 |12] 4 |11 | 3 |10 | 2 9 1 8
8101 8 1 9 2110 3 |11 | 4 |12| 5 | 13| 6 |14 | 7
9101 9 3 12| 6 0 9 3 |12] 6 0 9 3 12| 6
10/ 0]10| 5 0 [10] 5 0 |10]| 5 0 |10]| 5 0 [10]| 5
11(0)11 | 7 3 14]10]| 6 2 [13] 9 5 1 12 | 8 4
121012] 9 6 3 01[12] 9 6 3 01(1121] 9 6 3
130113 |11] 9 7 5 3 1 14 |12 |10 | 8 6 4 2
141014 13|12 |11]10| 9 8 7 6 5 4 3 2 1
SI335 (USNA) Unit 3 Spring 2015 9/ 30

Modular Arithmetic

Modular Multiplication

There's a similar (and similarly useful!) theorem to addition:

Theorem
For any integers a, b, m with m > 0,
(ab) mod m = (a mod m)(b mod m) mod m

What about modular division?
o We can view division as multiplication: a/b=a-b~L.
o b7l is the number that multiplies with b to give 1 mod m

o Does the reciprocal (multiplicative inverse) always exist?

S1335 (USNA) Unit 3 Spring 2015 10/ 30
Modular Arithmetic
Modular Inverses
Look back at the table for multiplication mod 15.
A number has an inverse if there is a 1 in its row or column.
S1335 (USNA) Unit 3 Spring 2015 11 /30

Modular Arithmetic

Multiplication mod 13

x [0 1 2 3 4 5 6 7 8 9 [10| 11 | 12
0[]0} O 0 0 0 0 0 0 0 0 0 0 0
110 1 2 3 4 5 6 7 8 9 [10| 11 | 12
210 2 4 6 8 10 | 12 1 3 5 7 9 11
3101 3 6 9 |12 | 2 5 8 | 11 1 4 7 |10
4101 4 8 12| 3 7111 2 6 |10] 1 5 9
510 5 10| 2 7112] 4 9 1 6 |11] 3 8
60| 6 [12| 5 |11 | 4 |10]| 3 9 8 1 7
7107 1 8 2 9 3 110] 4 |11 | 5 |12] 6
810 8 3 |11] 6 1 9 4 |12 7 2 10| &
9101 9 5 1 10 | 6 2 (11| 7 3 12| 8 4
100(0 (10| 7 4 1 |11 | 8 5 2 12 9 6 3
11011 9 7 5 3 1 12 110 | 8 6 4 2
12 (012 (11]10] 9 8 7 6 5 4 3 2 1
See all the inverses?
SI 335 (USNA) Unit 3 Spring 2015

12 /30

Modular Arithmetic

Totient function

This function has a first name; it's Euler.

Definition

The Euler totient function, written ¢(n), is the number of integers less

than n that don't have any common factors with n.

Of course, this is also the number of invertible integers mod n.

When n is prime, ¢(n) = n— 1. What about ¢(15)?

S1335 (USNA) Unit 3 Spring 2015 13 /30
Modular Arithmetic
Modular Exponentiation
This is the most important operation for cryptography!
Example: Compute 32013 mod 5.
S1335 (USNA) Unit 3 Spring 2015 14 / 30

The Euclidean Algorithm

Computing GCD's
The greatest common divisor (GCD) of two integers is the largest
number which divides them both evenly.

Euclid’s algorithm (c. 300 B.C.!) finds it:
GCD (Euclidean algorithm)

Input: Integers a and b
Output: g, the gcd of a and b

def gcd(a, b):
if b ==
return a
else:
return gcd(b, a % b)

Correctness relies on two facts:

o gcd(a,0) = a
o ged(a, b) = ged(b, a mod b)
SI 335 (USNA) Unit 3 Spring 2015 15 / 30

The Euclidean Algorithm

Analysis of Euclidean Algorithm

S1335 (USNA) Unit 3 Spring 2015 16 / 30
The Euclidean Algorithm

Worst-case of Euclidean Algorithm
Definition
The Fibonacci numbers are defined recursively by:

o fp=0

o f1=1

o fp="Ffh o+ fi_1forn>2
The worst-case of Euclid’s algorithm is computing ged(f,, fo—1).

S1335 (USNA) Unit 3 Spring 2015 17 / 30

The Euclidean Algorithm
Extended Euclidean Algorithm

Computing gcd(a, m) tells us whether a=! mod m exists.
This algorithm computes it:

Input: Integers a and b
Output: Integers g, s, and t such that g = GCD(a,b) and as + bt = g.
def xgcd(a, b):
if == 0:
return (a, 1, 0)
else:
q, r = divmod(a, b)
(g, s0, t0) = xgcd(b, r)
return (g, t0, sO - t0x*q)

Notice: bt = g mod a. So if the gcd is 1, this finds the multiplicative
inverse!

SI 335 (USNA) Unit 3 Spring 2015

18 / 30

Encryption

Cryptography
Basic setup:
@ Alice has a message M that she wants to send to Bob.

@ She encrypts M into another message E which is gibberish to anyone
except Bob, and sends E to Bob.

@ Bob decrypts E to get back the original message M from Alice.

Generally, M and E are just big numbers of a fixed size.
So the full message must be encoded into bits, then split into blocks which
are encrypted separately.

A|/B|C|D|E|F|G
O 1|23 |4|5]|6

K|L|M
9 | 10| 11 | 12

~| o
—
<~

NIO|P|Q|R|S|T|U|V W|X|Y|Z
13|14 |15 (16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25

S1335 (USNA) Unit 3 Spring 2015 19 / 30

Encryption

Example of blocking

lo1000| [oo101]| [o1100| [10000]

0100000101 0110010000

message = (261, 400)

SI335 (USNA) Unit 3 Spring 2015 20 / 30

Encryption

Public Key Encryption

Traditionally, cryptography required Alice and Bob to have a pre-shared
key, secret to only them.

Along came the internet, and suddenly we want to communicate with
people/businesses/sites we haven't met before.

The solution is public-key cryptography:
@ Bob has two keys: a public key and a private key
@ The public key is used for encryption and is published publicly

@ The private key is used for decryption and is a secret only Bob knows.

SI 335 (USNA) Unit 3 Spring 2015 21 /30

Encryption

RSA

o RSA public key: A pair of integers (e, n)
o RSA private key: A pair of integers (d, n)
o The n’s are the same!

RSA Encryption

The message M should satisfy 2 < M < n
E = M® mod n

RSA Decryption
M = E mod n

51335 (USNA) Unit 3 Spring 2015 22 / 30

Encryption

RSA Example

Alice wants to send the message "HELP" to Bob.
o Bob's public key: (e, n) = (37, 8633)
o Bob's private key: (d, n) = (685, 8633)

Encryption
“HELP" — (261, 400) — (261° mod n, 400° mod n) — (5096, 1385)

Decryption
(5096, 1385) — (5096¢ mod n, 1385¢ mod n) — (261, 400) — “HELP"

SI335 (USNA) Unit 3 Spring 2015 23 / 30

Encryption

RSA Key Generation

We need d, e, n to satisfy (M?)¢ = M mod n for any M.

Solution:

@ Choose 2 big primes p and g such that n = pg has more than k bits
(to encrypt k-bit messages).

@ Choose e such that2 < e < (p—1)(g — 1) and
ged((p—1)(g—1).e) = 1.

@ Compute d = e~ mod o(n) with the Extended GCD algorithm

SI 335 (USNA) Unit 3 Spring 2015 24 /30

Analysis of RSA

RSA Analysis

We want to know how much the following cost:

o Generating a public/private key pair
o Encrypting or decrypting with the proper keys
o Decrypting without the private key

What would it take for this to be a secure cryptosystem?

S1335 (USNA) Unit 3 Spring 2015 25 / 30

Analysis of RSA

Primality Testing

RSA key generation requires computing random primes.

o Good news: Primes are everywhere! In particular, about 1 in every k
integers with k bits is prime.

o Bad news: Testing for primality seems difficult.
We need to be able to do this faster than factorization!

SI335 (USNA) Unit 3 Spring 2015 26 / 30

Analysis of RSA

Miller-Rabin Test

Input: Positive integer n
Output: True if n is prime, otherwise False (probably)

def probably_prime(n):

a = random.randrange (2, n-1)
d = n-1
k=0
while d % 2 == 0:
d =d// 2
k =k +1
x = ax*xd % n
if x*x2 Y == 1: return True
for r in range(1l, k):
X = x**2 Y n
if x == return False

1:
if x == n-1: return True
return False

SI 335 (USNA) Unit 3 Spring 2015 27 / 30

Analysis of RSA

Cost analysis for k-bit encryption

The main capabilities we need are:
o Generating random primes
o Computing XGCDs

o Modular exponentiation

The cost of key generation is O(k*)

The cost of encryption and decryption are O(k3).

S1335 (USNA) Unit 3 Spring 2015

28 /30

Analysis of RSA

Security of RSA

We need to assert, without proof, that:

@ The only way to decrypt a message is to have the private key (d, n).

@ The only way to get the private key is to first compute (n).
® The only way to compute ¢(n) is to factor n.

@ There is no algorithm for factoring a number that is the product of

two large primes in polynomial-time.

If all this is true, then as the key length k grows, the cost of factoring will

always outpace the cost of encrypting/decrypting with the proper keys.

SI 335 (USNA) Unit 3 Spring 2015

29 /30

Analysis of RSA

Summary

We acquired the following number-theoretic tools:
o Modular arithmetic (addition, multiplication, division, powering)
o GCDs and XGCDs with the Euclidean algorithm

o Primality testing (fast) and factorization (slow)

All these pieces are used in implementing and analyzing RSA.

SI 335 (USNA) Unit 3 Spring 2015

30/ 30

