

Factorization

Classic number theory question: What is the prime factorization of an integer n?

Recall:

- A prime number is divisible only by 1 and itself.
- \circ Every integer > 1 is either prime or composite.
- Every integer has a unique prime factorization.

It suffices to compute a single prime factor of n .

The size of an integer

The actual running time, in terms of the size $s \in \Theta(\log n)$ of *n*, is $\Theta(2^{s/2})$.

Definition

Polynomial Time

An algorithm runs in **polynomial time** if its worst-case cost is $O(n^c)$ for some constant c.

Why do we care? The following is sort of an algorithmic "Moore's Law":

Cobham-Edmonds Thesis An algorithm for a computational problem can be feasibly solved on a computer only if it is polynomial time.

So our integer factorization algorithm is actually really slow!

SI 335 (USNA) Unit 3 Unit 3 Spring 2015 5 / 30

Modular Arithmetic

Modular Arithmetic

Division with Remainder For any integers a and m with $m > 0$, there exist integers q and r with $0 \le r < m$ such that

 $a = qm + r$.

We write a mod $m = r$. Modular arithmetic means doing all computations "mod m ".

Modular Arithmetic

Modular Addition

This theorem is the key for efficient computation:

Theorem

For any integers a, b, m with $m > 0$,

 $(a + b)$ mod $m = (a \mod m) + (b \mod m)$ mod m

Subtraction can be defined in terms of addition:

• $a - b$ is just $a + (-b)$

 \bullet −*b* is the number that adds to *b* to give 0 mod *m*

For
$$
0 < b < m
$$
, $-b \mod m = m - b$

SI 335 (USNA) Unit 3 Spring 2015 8 / 30

SI 335 (USNA) Unit 3 Unit 3 Spring 2015 14 / 30

The Euclidean Algorithm

Computing GCD's The greatest common divisor (GCD) of two integers is the largest number which divides them both evenly. Euclid's algorithm (c. 300 B.C.!) finds it: GCD (Euclidean algorithm) Input: Integers a and b Output: g, the gcd of a and b def $gcd(a, b)$: if $b == 0$: return a else : return gcd (b, a % b) Correctness relies on two facts: • $gcd(a, 0) = a$ o $gcd(a, b) = gcd(b, a \mod b)$ SI 335 (USNA) Unit 3 Spring 2015 15 / 30

Worst-case of Euclidean Algorithm

Definition

The Fibonacci numbers are defined recursively by:

- $f_0 = 0$
- $\circ\hspace{0.1cm}f_{1} = 1$
- \circ $f_n = f_{n-2} + f_{n-1}$ for $n \ge 2$

The worst-case of Euclid's algorithm is computing $gcd(f_n, f_{n-1})$.

SI 335 (USNA) Unit 3 Unit 3 Spring 2015 17 / 30

Extended Euclidean Algorithm

Computing gcd(a, m) tells us whether a^{-1} mod m exists. This algorithm computes it: Input: Integers a and b

The Euclidean Algorithm

```
Output: Integers g, s, and t such that g = GCD(a, b) and as + bt = g.
def xgcd (a, b):
    if b == 0:
        return (a, 1, 0)else :
         q, r = divmod(a, b)
         (g, so, to) = xgcd(b, r)return (g, to, so -t0*q)
```
Notice: $bt = g \text{ mod } a$. So if the gcd is 1, this finds the multiplicative inverse!

Cryptography

Basic setup:

 \bullet Alice has a message M that she wants to send to Bob.

Encryption

- 2 She encrypts M into another message E which is gibberish to anyone except Bob, and sends E to Bob.
- 3 Bob decrypts E to get back the original message M from Alice.

Generally, M and E are just big numbers of a fixed size.

So the full message must be encoded into bits, then split into blocks which are encrypted separately.

Public Key Encryption

Traditionally, cryptography required Alice and Bob to have a pre-shared key, secret to only them.

Encryption

Along came the internet, and suddenly we want to communicate with people/businesses/sites we haven't met before.

The solution is public-key cryptography:

- ¹ Bob has two keys: a public key and a private key
- ² The public key is used for encryption and is published publicly
- ³ The private key is used for decryption and is a secret only Bob knows.

- **1** Choose 2 big primes p and q such that $n = pq$ has more than k bits (to encrypt k-bit messages).
- 2 Choose e such that $2 \le e < (p-1)(q-1)$ and $gcd((p-1)(q-1), e) = 1.$
- 3 Compute $d=e^{-1}$ mod $\varphi(n)$ with the Extended GCD algorithm

def probably_prime (n): $a = random.random(2, n-1)$ $d = n - 1$ $k = 0$ while d $\%$ 2 == 0: $d = d$ // 2 $k = k + 1$ $x = a**d$ % n if $x**2$ % n == 1: return True for r in range $(1, k)$: $x = x**2$ % n if x == 1: return False if x == n -1: return True return False SI 335 (USNA) Unit 3 Unit 3 Spring 2015 27 / 30

