
Why Number Theory?

Number Theory

Number Theory is the study of integers and their resulting structures.

Why study it?

1 History: the first true algorithms were number-theoretic.

2 Analysis: We’ll learn about new kinds of running times and analyses.

3 Cryptography! Modern cryptosystems rely heavily on this stuff.

4 Computers are always dealing with integers anyway!
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The size of an integer

How big is an integer?

The measure of difficulty for array-based problems was always the size of
the array.

What should it be for an algorithm that takes an integer n?

The size of n corresponds to its size in memory.

The binary representation has dlg(n + 1)e bits

This is Θ(log n).

From now on, integers are either single-precision or multiple-precision.
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The size of an integer

Factorization

Classic number theory question: What is the prime factorization of an
integer n?

Recall:

A prime number is divisible only by 1 and itself.

Every integer > 1 is either prime or composite.

Every integer has a unique prime factorization.

It suffices to compute a single prime factor of n.
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The size of an integer

leastPrimeFactor

Input: Positive integer n

Output: The smallest prime p that divides n

def leastPrimeFactor(n):

i = 2

while i * i <= n:

if n % i == 0:

return i

i = i + 1

return n

Running time:
Is this fast??

SI 335 (USNA) Unit 3 Spring 2015 4 / 30

The size of an integer

Polynomial Time

The actual running time, in terms of the size s ∈ Θ(log n) of n, is Θ(2s/2).

Definition

An algorithm runs in polynomial time if its worst-case cost is O(nc) for
some constant c .

Why do we care? The following is sort of an algorithmic “Moore’s Law”:

Cobham-Edmonds Thesis

An algorithm for a computational problem can be feasibly solved on a
computer only if it is polynomial time.

So our integer factorization algorithm is actually really slow!
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Modular Arithmetic

Modular Arithmetic

Division with Remainder

For any integers a and m with m > 0, there exist integers q and r with
0 ≤ r < m such that

a = qm + r .

We write a mod m = r .
Modular arithmetic means doing all computations ”mod m”.
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Modular Arithmetic

Addition mod 15

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8
10 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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Modular Arithmetic

Modular Addition

This theorem is the key for efficient computation:

Theorem

For any integers a, b,m with m > 0,
(a + b) mod m = (a mod m) + (b mod m) mod m

Subtraction can be defined in terms of addition:

a− b is just a + (−b)

−b is the number that adds to b to give 0 mod m

For 0 < b < m, −b mod m = m − b
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Modular Arithmetic

Multiplication mod 15

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 0 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 0 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 0 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 0 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 0 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 0 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1
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Modular Arithmetic

Modular Multiplication

There’s a similar (and similarly useful!) theorem to addition:

Theorem

For any integers a, b,m with m > 0,
(ab) mod m = (a mod m)(b mod m) mod m

What about modular division?

We can view division as multiplication: a/b = a · b−1.

b−1 is the number that multiplies with b to give 1 mod m

Does the reciprocal (multiplicative inverse) always exist?
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Modular Arithmetic

Modular Inverses

Look back at the table for multiplication mod 15.
A number has an inverse if there is a 1 in its row or column.

Invertible mod 15:

Not invertible:
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Modular Arithmetic

Multiplication mod 13

× 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 9 3 10 4 11 5 12 6
8 0 8 3 11 6 1 9 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

See all the inverses?
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Modular Arithmetic

Totient function

This function has a first name; it’s Euler.

Definition

The Euler totient function, written ϕ(n), is the number of integers less
than n that don’t have any common factors with n.

Of course, this is also the number of invertible integers mod n.

When n is prime, ϕ(n) = n − 1. What about ϕ(15)?
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Modular Arithmetic

Modular Exponentiation

This is the most important operation for cryptography!

Example: Compute 32013 mod 5.

Best algorithm in general: Square-and-multiply.
Write e = 2u + v , so ae = (au)2 · av .

Even better for small m: Compute ϕ(m) and use Fermat’s Little
Theorem: aϕ(m) = 1 mod m.
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The Euclidean Algorithm

Computing GCD’s
The greatest common divisor (GCD) of two integers is the largest
number which divides them both evenly.

Euclid’s algorithm (c. 300 B.C.!) finds it:

GCD (Euclidean algorithm)

Input: Integers a and b

Output: g, the gcd of a and b

def gcd(a, b):

if b == 0:

return a

else:

return gcd(b, a % b)

Correctness relies on two facts:

gcd(a, 0) = a

gcd(a, b) = gcd(b, a mod b)
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The Euclidean Algorithm

Analysis of Euclidean Algorithm
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The Euclidean Algorithm

Worst-case of Euclidean Algorithm

Definition

The Fibonacci numbers are defined recursively by:

f0 = 0

f1 = 1

fn = fn−2 + fn−1 for n ≥ 2

The worst-case of Euclid’s algorithm is computing gcd(fn, fn−1).
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The Euclidean Algorithm

Extended Euclidean Algorithm

Computing gcd(a,m) tells us whether a−1 mod m exists.
This algorithm computes it:

Input: Integers a and b

Output: Integers g, s, and t such that g = GCD(a,b) and as + bt = g .

def xgcd(a, b):

if b == 0:

return (a, 1, 0)

else:

q, r = divmod(a, b)

(g, s0 , t0) = xgcd(b, r)

return (g, t0 , s0 - t0*q)

Notice: bt = g mod a. So if the gcd is 1, this finds the multiplicative
inverse!
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Encryption

Cryptography
Basic setup:

1 Alice has a message M that she wants to send to Bob.

2 She encrypts M into another message E which is gibberish to anyone
except Bob, and sends E to Bob.

3 Bob decrypts E to get back the original message M from Alice.

Generally, M and E are just big numbers of a fixed size.
So the full message must be encoded into bits, then split into blocks which
are encrypted separately.

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25
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Encryption

Example of blocking

message = (261, 400)

400

0110010000

10000

16

P

01100

12

L

261

0100000101

00101

5

E

01000

8

H
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Encryption

Public Key Encryption

Traditionally, cryptography required Alice and Bob to have a pre-shared
key, secret to only them.

Along came the internet, and suddenly we want to communicate with
people/businesses/sites we haven’t met before.

The solution is public-key cryptography:

1 Bob has two keys: a public key and a private key

2 The public key is used for encryption and is published publicly

3 The private key is used for decryption and is a secret only Bob knows.
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Encryption

RSA

RSA public key: A pair of integers (e, n)

RSA private key: A pair of integers (d , n)

The n’s are the same!

RSA Encryption

The message M should satisfy 2 ≤ M < n
E = Me mod n

RSA Decryption

M = Ed mod n

SI 335 (USNA) Unit 3 Spring 2015 22 / 30

Encryption

RSA Example

Alice wants to send the message “HELP” to Bob.

Bob’s public key: (e, n) = (37, 8633)

Bob’s private key: (d , n) = (685, 8633)

Encryption

“HELP” → (261, 400) → (261e mod n, 400e mod n) → (5096, 1385)

Decryption

(5096, 1385) → (5096d mod n, 1385d mod n) → (261, 400) → “HELP”
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Encryption

RSA Key Generation

We need d , e, n to satisfy (Md)e = M mod n for any M.

Solution:

de mod ϕ(n) = 1
We use the fact that ϕ(pq) = (p − 1)(q − 1) for primes p, q.

1 Choose 2 big primes p and q such that n = pq has more than k bits
(to encrypt k-bit messages).

2 Choose e such that 2 ≤ e < (p − 1)(q − 1) and
gcd((p − 1)(q − 1), e) = 1.

3 Compute d = e−1 mod ϕ(n) with the Extended GCD algorithm
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Analysis of RSA

RSA Analysis

We want to know how much the following cost:

Generating a public/private key pair

Encrypting or decrypting with the proper keys

Decrypting without the private key

What would it take for this to be a secure cryptosystem?
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Analysis of RSA

Primality Testing

RSA key generation requires computing random primes.

Good news: Primes are everywhere! In particular, about 1 in every k
integers with k bits is prime.

Bad news: Testing for primality seems difficult.
We need to be able to do this faster than factorization!
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Analysis of RSA

Miller-Rabin Test

Input: Positive integer n

Output: True if n is prime, otherwise False (probably)

def probably_prime(n):

a = random.randrange (2, n-1)

d = n-1

k = 0

while d % 2 == 0:

d = d // 2

k = k + 1

x = a**d % n

if x**2 % n == 1: return True

for r in range(1, k):

x = x**2 % n

if x == 1: return False

if x == n-1: return True

return False
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Analysis of RSA

Cost analysis for k-bit encryption

The main capabilities we need are:

Generating random primes

Computing XGCDs

Modular exponentiation

The cost of key generation is O(k4)

The cost of encryption and decryption are O(k3).
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Analysis of RSA

Security of RSA

We need to assert, without proof, that:

1 The only way to decrypt a message is to have the private key (d , n).

2 The only way to get the private key is to first compute ϕ(n).

3 The only way to compute ϕ(n) is to factor n.

4 There is no algorithm for factoring a number that is the product of
two large primes in polynomial-time.

If all this is true, then as the key length k grows, the cost of factoring will
always outpace the cost of encrypting/decrypting with the proper keys.
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Analysis of RSA

Summary

We acquired the following number-theoretic tools:

Modular arithmetic (addition, multiplication, division, powering)

GCDs and XGCDs with the Euclidean algorithm

Primality testing (fast) and factorization (slow)

All these pieces are used in implementing and analyzing RSA.
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