
Why Number Theory?

Number Theory

Number Theory is the study of integers and their resulting structures.

Why study it?

1 History: the first true algorithms were number-theoretic.

2 Analysis: We’ll learn about new kinds of running times and analyses.

3 Cryptography! Modern cryptosystems rely heavily on this stuff.

4 Computers are always dealing with integers anyway!

SI 335 (USNA) Unit 3 Spring 2015 1 / 30

The size of an integer

How big is an integer?

The measure of difficulty for array-based problems was always the size of
the array.

What should it be for an algorithm that takes an integer n?

The size of n corresponds to its size in memory.

The binary representation has dlg(n + 1)e bits

This is Θ(log n).

From now on, integers are either single-precision or multiple-precision.

SI 335 (USNA) Unit 3 Spring 2015 2 / 30

The size of an integer

Factorization

Classic number theory question: What is the prime factorization of an
integer n?

Recall:

A prime number is divisible only by 1 and itself.

Every integer > 1 is either prime or composite.

Every integer has a unique prime factorization.

It suffices to compute a single prime factor of n.

SI 335 (USNA) Unit 3 Spring 2015 3 / 30

The size of an integer

leastPrimeFactor

Input: Positive integer n

Output: The smallest prime p that divides n

def leastPrimeFactor(n):

i = 2

while i * i <= n:

if n % i == 0:

return i

i = i + 1

return n

Running time:
Is this fast??

SI 335 (USNA) Unit 3 Spring 2015 4 / 30

The size of an integer

Polynomial Time

The actual running time, in terms of the size s ∈ Θ(log n) of n, is Θ(2s/2).

Definition

An algorithm runs in polynomial time if its worst-case cost is O(nc) for
some constant c .

Why do we care? The following is sort of an algorithmic “Moore’s Law”:

Cobham-Edmonds Thesis

An algorithm for a computational problem can be feasibly solved on a
computer only if it is polynomial time.

So our integer factorization algorithm is actually really slow!

SI 335 (USNA) Unit 3 Spring 2015 5 / 30

Modular Arithmetic

Modular Arithmetic

Division with Remainder

For any integers a and m with m > 0, there exist integers q and r with
0 ≤ r < m such that

a = qm + r .

We write a mod m = r .
Modular arithmetic means doing all computations ”mod m”.

SI 335 (USNA) Unit 3 Spring 2015 6 / 30

Modular Arithmetic

Addition mod 15

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8
10 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13

SI 335 (USNA) Unit 3 Spring 2015 7 / 30

Modular Arithmetic

Modular Addition

This theorem is the key for efficient computation:

Theorem

For any integers a, b,m with m > 0,
(a + b) mod m = (a mod m) + (b mod m) mod m

Subtraction can be defined in terms of addition:

a− b is just a + (−b)

−b is the number that adds to b to give 0 mod m

For 0 < b < m, −b mod m = m − b

SI 335 (USNA) Unit 3 Spring 2015 8 / 30

Modular Arithmetic

Multiplication mod 15

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 0 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 0 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 0 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 0 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 0 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 0 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1

SI 335 (USNA) Unit 3 Spring 2015 9 / 30

Modular Arithmetic

Modular Multiplication

There’s a similar (and similarly useful!) theorem to addition:

Theorem

For any integers a, b,m with m > 0,
(ab) mod m = (a mod m)(b mod m) mod m

What about modular division?

We can view division as multiplication: a/b = a · b−1.

b−1 is the number that multiplies with b to give 1 mod m

Does the reciprocal (multiplicative inverse) always exist?

SI 335 (USNA) Unit 3 Spring 2015 10 / 30

Modular Arithmetic

Modular Inverses

Look back at the table for multiplication mod 15.
A number has an inverse if there is a 1 in its row or column.

Invertible mod 15:

Not invertible:

SI 335 (USNA) Unit 3 Spring 2015 11 / 30

Modular Arithmetic

Multiplication mod 13

× 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 9 3 10 4 11 5 12 6
8 0 8 3 11 6 1 9 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

See all the inverses?

SI 335 (USNA) Unit 3 Spring 2015 12 / 30

Modular Arithmetic

Totient function

This function has a first name; it’s Euler.

Definition

The Euler totient function, written ϕ(n), is the number of integers less
than n that don’t have any common factors with n.

Of course, this is also the number of invertible integers mod n.

When n is prime, ϕ(n) = n − 1. What about ϕ(15)?

SI 335 (USNA) Unit 3 Spring 2015 13 / 30

Modular Arithmetic

Modular Exponentiation

This is the most important operation for cryptography!

Example: Compute 32013 mod 5.

Best algorithm in general: Square-and-multiply.
Write e = 2u + v , so ae = (au)2 · av .

Even better for small m: Compute ϕ(m) and use Fermat’s Little
Theorem: aϕ(m) = 1 mod m.

SI 335 (USNA) Unit 3 Spring 2015 14 / 30

The Euclidean Algorithm

Computing GCD’s
The greatest common divisor (GCD) of two integers is the largest
number which divides them both evenly.

Euclid’s algorithm (c. 300 B.C.!) finds it:

GCD (Euclidean algorithm)

Input: Integers a and b

Output: g, the gcd of a and b

def gcd(a, b):

if b == 0:

return a

else:

return gcd(b, a % b)

Correctness relies on two facts:

gcd(a, 0) = a

gcd(a, b) = gcd(b, a mod b)
SI 335 (USNA) Unit 3 Spring 2015 15 / 30

The Euclidean Algorithm

Analysis of Euclidean Algorithm

SI 335 (USNA) Unit 3 Spring 2015 16 / 30

The Euclidean Algorithm

Worst-case of Euclidean Algorithm

Definition

The Fibonacci numbers are defined recursively by:

f0 = 0

f1 = 1

fn = fn−2 + fn−1 for n ≥ 2

The worst-case of Euclid’s algorithm is computing gcd(fn, fn−1).

SI 335 (USNA) Unit 3 Spring 2015 17 / 30

The Euclidean Algorithm

Extended Euclidean Algorithm

Computing gcd(a,m) tells us whether a−1 mod m exists.
This algorithm computes it:

Input: Integers a and b

Output: Integers g, s, and t such that g = GCD(a,b) and as + bt = g .

def xgcd(a, b):

if b == 0:

return (a, 1, 0)

else:

q, r = divmod(a, b)

(g, s0 , t0) = xgcd(b, r)

return (g, t0 , s0 - t0*q)

Notice: bt = g mod a. So if the gcd is 1, this finds the multiplicative
inverse!

SI 335 (USNA) Unit 3 Spring 2015 18 / 30

Encryption

Cryptography
Basic setup:

1 Alice has a message M that she wants to send to Bob.

2 She encrypts M into another message E which is gibberish to anyone
except Bob, and sends E to Bob.

3 Bob decrypts E to get back the original message M from Alice.

Generally, M and E are just big numbers of a fixed size.
So the full message must be encoded into bits, then split into blocks which
are encrypted separately.

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

SI 335 (USNA) Unit 3 Spring 2015 19 / 30

Encryption

Example of blocking

message = (261, 400)

400

0110010000

10000

16

P

01100

12

L

261

0100000101

00101

5

E

01000

8

H

SI 335 (USNA) Unit 3 Spring 2015 20 / 30

Encryption

Public Key Encryption

Traditionally, cryptography required Alice and Bob to have a pre-shared
key, secret to only them.

Along came the internet, and suddenly we want to communicate with
people/businesses/sites we haven’t met before.

The solution is public-key cryptography:

1 Bob has two keys: a public key and a private key

2 The public key is used for encryption and is published publicly

3 The private key is used for decryption and is a secret only Bob knows.

SI 335 (USNA) Unit 3 Spring 2015 21 / 30

Encryption

RSA

RSA public key: A pair of integers (e, n)

RSA private key: A pair of integers (d , n)

The n’s are the same!

RSA Encryption

The message M should satisfy 2 ≤ M < n
E = Me mod n

RSA Decryption

M = Ed mod n

SI 335 (USNA) Unit 3 Spring 2015 22 / 30

Encryption

RSA Example

Alice wants to send the message “HELP” to Bob.

Bob’s public key: (e, n) = (37, 8633)

Bob’s private key: (d , n) = (685, 8633)

Encryption

“HELP” → (261, 400) → (261e mod n, 400e mod n) → (5096, 1385)

Decryption

(5096, 1385) → (5096d mod n, 1385d mod n) → (261, 400) → “HELP”

SI 335 (USNA) Unit 3 Spring 2015 23 / 30

Encryption

RSA Key Generation

We need d , e, n to satisfy (Md)e = M mod n for any M.

Solution:

de mod ϕ(n) = 1
We use the fact that ϕ(pq) = (p − 1)(q − 1) for primes p, q.

1 Choose 2 big primes p and q such that n = pq has more than k bits
(to encrypt k-bit messages).

2 Choose e such that 2 ≤ e < (p − 1)(q − 1) and
gcd((p − 1)(q − 1), e) = 1.

3 Compute d = e−1 mod ϕ(n) with the Extended GCD algorithm

SI 335 (USNA) Unit 3 Spring 2015 24 / 30

Analysis of RSA

RSA Analysis

We want to know how much the following cost:

Generating a public/private key pair

Encrypting or decrypting with the proper keys

Decrypting without the private key

What would it take for this to be a secure cryptosystem?

SI 335 (USNA) Unit 3 Spring 2015 25 / 30

Analysis of RSA

Primality Testing

RSA key generation requires computing random primes.

Good news: Primes are everywhere! In particular, about 1 in every k
integers with k bits is prime.

Bad news: Testing for primality seems difficult.
We need to be able to do this faster than factorization!

SI 335 (USNA) Unit 3 Spring 2015 26 / 30

Analysis of RSA

Miller-Rabin Test

Input: Positive integer n

Output: True if n is prime, otherwise False (probably)

def probably_prime(n):

a = random.randrange (2, n-1)

d = n-1

k = 0

while d % 2 == 0:

d = d // 2

k = k + 1

x = a**d % n

if x**2 % n == 1: return True

for r in range(1, k):

x = x**2 % n

if x == 1: return False

if x == n-1: return True

return False

SI 335 (USNA) Unit 3 Spring 2015 27 / 30

Analysis of RSA

Cost analysis for k-bit encryption

The main capabilities we need are:

Generating random primes

Computing XGCDs

Modular exponentiation

The cost of key generation is O(k4)

The cost of encryption and decryption are O(k3).

SI 335 (USNA) Unit 3 Spring 2015 28 / 30

Analysis of RSA

Security of RSA

We need to assert, without proof, that:

1 The only way to decrypt a message is to have the private key (d , n).

2 The only way to get the private key is to first compute ϕ(n).

3 The only way to compute ϕ(n) is to factor n.

4 There is no algorithm for factoring a number that is the product of
two large primes in polynomial-time.

If all this is true, then as the key length k grows, the cost of factoring will
always outpace the cost of encrypting/decrypting with the proper keys.

SI 335 (USNA) Unit 3 Spring 2015 29 / 30

Analysis of RSA

Summary

We acquired the following number-theoretic tools:

Modular arithmetic (addition, multiplication, division, powering)

GCDs and XGCDs with the Euclidean algorithm

Primality testing (fast) and factorization (slow)

All these pieces are used in implementing and analyzing RSA.

SI 335 (USNA) Unit 3 Spring 2015 30 / 30

