
Quadratic-time sorting Overview

Sorting

Sorting Problem

Input: An array of comparable elements
Output: The same elements, sorted in ascending order

One of the most well-studied algorithmic problems

Has lots of practical applications

You should already know a few algorithms. . .
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Quadratic-time sorting Overview

SelectionSort

def selectionSort(A):

for i in range(0, len(A)-1):

m = i

for j in range(i+1, len(A)):

if A[j] < A[m]:

m = j

swap(A, i, m)
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Quadratic-time sorting Overview

InsertionSort

def insertionSort(A):

for i in range(1, len(A)):

j = i - 1

while j >= 0 and A[j] > A[j+1]:

swap(A, j, j+1)

j = j - 1
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Quadratic-time sorting Overview

Common Features

It’s useful to look for larger patterns in algorithm design.

Both InsertionSort and SelectionSort build up a sorted array one element
at a time, in the following two steps:

Pick: Pick an element in the unsorted part of the array

Place: Insert that element into the sorted part of the array

For both algorithms, one of these is “easy” (constant time) and the other
is “hard” (O(n) time). Which ones?
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Quadratic-time sorting Loop analysis with summations

Analysis of SelectionSort

Each loop has O(n) iterations, so the total cost is O(n2).

What about a big-Θ bound?
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Quadratic-time sorting Loop analysis with summations

Arithmetic Series

An arithmetic series is one where consecutive terms differ by a constant.

General formula:
m∑

i=0

(a + bi) =
(m + 1)(2a + bm)

2

So the worst-case of SelectionSort is

n−1∑

i=1

i =
n−2∑

i=0

(1 + 1i) =
n(n − 1)

2

This is Θ(n2), or quadratic time.
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Quadratic-time sorting Worst-case family of examples

Worst-Case Family

Why can’t we analyze InsertionSort in the same way?

The inner loop might terminate early.

We need a family of examples, of arbitrarily large size, that demonstrate
the worst case.

Worst-case for InsertionSort:

Worst-case cost:
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Quadratic-time sorting Worst-case family of examples

SelectionSort (Recursive Version)

def selectionSortRec(A, start =0):

if (start < len(A) - 1):

m = minIndex(A, start)

swap(A, start , m)

selectionSortRec(A, start + 1)

minIndex

def minIndex(A, start =0):

if start >= len(A) - 1:

return start

else:

m = minIndex(A, start +1)

if A[start] < A[m]:

return start

else:

return m
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Quadratic-time sorting Recursive analysis

Analysis of minIndex

Let T (n) be the worst-case number of operations for a size-n input array.

We need a recurrence relation to define T (n):

T (n) =

{
1, n ≤ 1
4 + T (n − 1), n ≥ 2

Solving the recurrence:
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Quadratic-time sorting Recursive analysis

Analysis of recursive SelectionSort

Let S(n) be the worst-case for SelectionSort

What is the recurrence?
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MergeSort Paradigm

Divide and Conquer

A new Algorithm Design Paradigm: Divide and Conquer

Works in three steps:

1 Break the problem into similar subproblems

2 Solve each of the subproblems recursively

3 Combine the results to solve the original problem.

MergeSort and BinarySearch both follow this paradigm.
(How do they approach each step?)
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MergeSort Paradigm

MergeSort

def mergeSort(A):

if len(A) <= 1:

return A

else:

m = len(A) // 2

B = A[0 : m]

C = A[m : len(A)]

mergeSort(B)

mergeSort(C)

A[:] = merge(B, C)
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MergeSort Paradigm

Merge

def merge(B, C):

A = []

i, j = 0, 0

while i < len(B) and j < len(C):

if B[i] <= C[j]:

A.append(B[i])

i = i + 1

else:

A.append(C[j])

j = j + 1

while i < len(B):

A.append(B[i])

i = i + 1

while j < len(C):

A.append(C[j])

j = j + 1

return A
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MergeSort Analysis

Analysis of Merge

Each while loop has constant cost.
So we just need the total number of iterations through every loop.

Lower bound Upper bound Exact

Loop 1 min(a, b) a + b
Loop 2 0 a
Loop 3 0 b

Total min(a, b) 2(a + b)

a is the size of A and b is the size of B.
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MergeSort Analysis

Analysis of MergeSort
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Lower Bound for Sorting

Complexity of Sorting

Algorithms we have seen so far:

Sort Worst-case cost

SelectionSort Θ(n2)

InsertionSort Θ(n2)

MergeSort Θ(n log n)

HeapSort Θ(n log n)

Million dollar question: Can we do better than Θ(n log n)?
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Lower Bound for Sorting

Comparison Model

Elements in the input array can only be accessed in two ways:

Moving them (swap, copy, etc.)

Comparing two of them (<, >, =, etc.)

Every sorting algorithm we have seen uses this model.
It is a very general model for sorting strings or integers or floats or
anything else.

What operations are not allowed in this model?
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Lower Bound for Sorting

Permutations

How many orderings (aka permutations) are there of n elements?

n factorial, written n! = n × (n − 1) × (n − 2) × · · · × 2 × 1.

Observation: A comparison-based sort is only sensitive to the ordering of
A, not the actual contents.

For example, MergeSort will do the same things on
[1,2,4,3], [34,35,37,36], or [10,20,200,99].
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Lower Bound for Sorting

Logarithms

Recall some useful facts about logarithms:

logb b = 1

logb ac = logb a + logb c

logb a
c = c logb a

logb a = (logc a)/(logc b)

Now how about a lower bound on lg n!?
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Lower Bound for Sorting

Lower Bound on Sorting

1 A correct algorithm must take different actions for each of the
possible input permutations.

2 The choice of actions is determined only by comparisons.

3 Each comparison has two outcomes.

4 An algorithm that performs c comparisons can only take 2c different
actions.

5 The algorithm must perform at least lg n! comparisons.

Therefore. . .ANY comparison-based sort is Ω(n log n)
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Conclusions

Any sorting algorithm that only uses comparisons must take at least
Ω(n log n) steps in the worst case.

This means that sorts like MergeSort and HeapSort couldn’t be much
better — they are asymptotically optimal.

What if I claimed to have a O(n) sorting algorithm?
What would that tell you about my algorithm (or about me)?

Remember what we learned about summations,
recursive algorithm analysis, and logarithms.
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