The Selection Problem

Order Statistics

We often want to compute a **median** of a list of values. (It gives a more accurate picture than the average sometimes.)

More generally, what element has position k in the sorted list? (For example, for percentiles or trimmed means.)

Selection Problem

Given a list A of size n, and an integer k, what element is at position k in the sorted list?

SI 335 (USNA) Unit 7 Spring 2014 1 / 39

The Selection Problem

Sorting-Based Solutions

• First idea: Sort, then look-up

• Second idea: Cut-off selection sort

SI 335 (USNA)

Unit 7

Spring 2014 2 / 39

The Selection Problem

Heap-Based Solutions

• First idea: Use a size-k max-heap

• Second idea: Use a size-n min-heap

SI 335 (USNA) Unit 7 Spring 2014 3 / 39

QuickSelect

Algorithm Design

What algorithm design paradigms could we use to attack the selection problem?

- Reduction to known problem What we just did!
- Memoization/Dynamic Programming Would need a recursive algorithm first...
- Divide and Conquer Like binary search — seems promising. What's the problem?

SI 335 (USNA)

Unit 7

Spring 2014 4 / 39

QuickSelect

A better "divide"

Consider this array: A = [60, 43, 61, 87, 89, 87, 77, 11, 49, 45]

- Difficult: Finding the element at a given position. For example, what is the 5th-smallest element in A?
- Easier: Finding the position of a given element. For example, what is the position of x = 77 in the sorted order?

Idea: Pick an element (the pivot), and sort around it.

SI 335 (USNA)

Unit 7

Spring 2014 5 / 39

QuickSelect

Partition Algorithm

Input: Array A of size n. **Pivot** is in A[0].

Output: Index p such that A[p] holds the pivot, and

 $A[a] \le A[p] < A[b]$ for all $0 \le a .$

```
def partition(A):
   n = len(A)
    i, j = 1, n-1
    while i <= j:
        if A[i] <= A[0]:
            i = i + 1
        elif A[j] > A[0]:
            j = j - 1
            swap(A, i, j)
    swap(A, 0, j)
    return j
```

SI 335 (USNA)

Unit 7

Spring 2014

QuickSelect

Analysis of partition

• **Loop Invariant**: Everything before A[i] is \leq the pivot; everything after A[j] is greater than the pivot.

• **Running time**: Consider the value of j - i.

SI 335 (USNA)

Unit 7

Spring 2014 7 / 39

QuickSelect

Choosing a Pivot

The choice of pivot is really important!

- Want the partitions to be close to the same size.
- What would be the very best choice?

Initial "dumb" idea: Just pick the first element:

Input: Array A of length n

Output: Index of the pivot element we want

def choosePivot1(A):
 return 0

SI 335 (USNA)

Unit 7

Spring 2014 8 / 39

QuickSelect

The Algorithm

```
Input: Array A of length n, and integer k
```

Output: Element at position k in the sorted array

```
def quickSelect1(A, k):
    n = len(A)
    swap(A, 0, choosePivot1(A))
    p = partition(A)
    if p == k:
        return A[p]
    elif p < k:
        return quickSelect1(A[p+1 : n], k-p-1)
    elif p > k:
        return quickSelect1(A[0 : p], k)
```

SI 335 (USNA)

Unit 7

Spring 2014 9 / 39

Analysis of QuickSelect

QuickSelect: Initial Analysis

Best case:

Worst case:

SI 335 (USNA)

Unit 7

Spring 2014 10 / 39

Analysis of QuickSelect

Average-case analysis

Assume all n! permutations are equally likely. Average cost is sum of costs for all permutations, divided by n!.

Define T(n, k) as average cost of quickSelect1(A,k):

$$T(n,k) = n + \frac{1}{n} \left(\sum_{p=0}^{k-1} T(n-p-1, k-p-1) + \sum_{p=k+1}^{n-1} T(p,k) \right)$$

See the book for a precise analysis, or...

SI 335 (USNA)

Unit 7

Spring 2014 11 / 39

Analysis of QuickSelect

Average-Case of quickSelect1

First simplification: define $T(n) = \max_k T(n, k)$

The key to the cost is the **position of the pivot**.

There are n possibilities, but can be grouped into:

- **Good pivots**: The position p is between n/4 and 3n/4. Size of recursive call:
- **Bad pivots**: Position p is less than n/4 or greater than 3n/4 Size of recursive call:

Each possibility occurs $\frac{1}{2}$ of the time.

SI 335 (USNA) Unit 7 Spring 2014 12 / 39

Average-Case of quickSelect1

Based on the cost and the probability of each possibility, we have:

$$T(n) \leq n + \frac{1}{2}T\left(\frac{3n}{4}\right) + \frac{1}{2}T(n)$$

(Assumption: every permutation in each partition is also equally likely.)

SI 335 (USNA)

Unit 7

Spring 2014 13 / 39

Randomized Pivot Choosing

Drawbacks of Average-Case Analysis

To get the average-case we had to make some BIG assumptions:

- Every permutation of the input is equally likely
- Every permutation of each half of the partition is still equally likely

The first assumption is actually false in most applications!

SI 335 (USNA)

Unit 7

Spring 2014 14 / 39

Randomized Pivot Choosing

Randomized algorithms

Randomized algorithms use a source of **random numbers** in addition to the given input.

AMAZINGLY, this makes some things faster!

Idea: Shift assumptions on the *input distribution* to assumptions on the *random number distribution*. (Why is this better?)

Specifically, assume the function ${\tt random(n)}$ returns an integer between 0 and n-1 with uniform probability.

SI 335 (USNA) Unit 7 Spring 2014 15 / 39

Randomized Pivot Choosing

Randomized quickSelect

We could shuffle the whole array into a randomized ordering, or:

① Choose the pivot element randomly:

Randomized pivot choice

```
def choosePivot2(A):
    # This returns a random number from 0 up to n-1
    return randrange(0, len(A))
```

② Incorporate this into the quickSelect algorithm:

Randomized selection

```
def quickSelect2(A, k):
    swap(A, 0, choosePivot2(A))
# ... the rest is the same as quickSelect1
```

SI 335 (USNA)

Unit 7

Spring 2014 16 / 39

Randomized Pivot Choosing

Analysis of quickSelect2

The **expected cost** of a randomized algorithm is the probability of each possibility, times the cost given that possibility.

We will focus on the expected worst-case running time.

Two cases: good pivot or bad pivot. Each occurs half of the time. . . The analysis is exactly the same as the average case!

Expected worst-case cost of quickSelect2 is $\Theta(n)$. Why is this better than average-case?

SI 335 (USNA)

Unit 7

Spring 2014 17 / 39

Median of Medians

Do we need randomization?

Can we do selection in linear time without randomization?

Blum, Floyd, Pratt, Rivest, and Tarjan figured it out in 1973.

But it's going to get a little complicated...

SI 335 (USNA) Unit 7 Spring 2014 18 / 39

Median of Medians

Median of Medians

Idea: Develop a divide-and-conquer algorithm for choosing the pivot.

- Split the input into m sub-arrays
- 2 Find the median of each sub-array
- 3 Look at just the m medians, and take the median of those
- 4 Use the median of medians as the pivot

This algorithm will be **mutually recursive** with the selection algorithm. Crazy!

SI 335 (USNA)

Unit 7

Spring 2014 19 / 39

Median of Medians

Note: q is a parameter, not part of the input. We'll figure it out next.

```
def choosePivot3(A):
    n = len(A)
    m = n // q
    # base case
    if m <= 1:
        return n // 2
    # Find median of each size-q group
    medians = []
    for i in range(0, m):
        medians.append(
           quickSelect3(A[i*q : (i+1)*q], q//2))
    # Find median of medians
    quickSelect3(medians, m//2)
    return m//2
    SI 335 (USNA)
                             Unit 7
                                                  Spring 2014 20 / 39
```

Median of Medians

Worst case of choosePivot3(A)

Assume all array elements are distinct.

Question: How unbalanced can the pivoting be?

- At least $\lceil m/2 \rceil$ medians must be \leq the chosen pivot.
- At least $\lceil q/2 \rceil$ elements are \leq each median.
- So the pivot must be greater than or equal to at least

$$\left\lceil \frac{m}{2} \right\rceil \cdot \left\lceil \frac{q}{2} \right\rceil$$

elements in the array, in the worst case.

 \bullet By the same reasoning, as many elements must be \geq the chosen pivot.

SI 335 (USNA) Unit 7 Spring 2014 21 / 39

Median of Medians

Worst-case example, q = 3

A = [13, 25, 18, 76, 39, 51, 53, 41, 96, 5, 19, 72, 20, 63, 11]

SI 335 (USNA)

Unit 7

Spring 2014 22 / 39

Median of Medians

Aside: "At Least Linear"

Definition

A function f(n) is **at least linear** if and only if f(n)/n is non-decreasing (for sufficiently large n).

- Any function that is $\Theta(n^c(\log n)^d)$ with $c \ge 1$ is "at least linear".
- You can pretty much assume that any running time that is $\Omega(n)$ is "at least linear".
- Important consequence: If T(n) is at least linear, then $T(m) + T(n) \le T(m+n)$ for any positive-valued variables n and m.

SI 335 (USNA)

Unit 7

Spring 2014 23 / 39

Median of Medians

Analysis of quickSelect3

Since quickSelect3 and choosePivot3 are **mutually recursive**, we have to analyze them together.

- Let T(n) = worst-case cost of quickSelect3(A,k)
- Let S(n) = worst-case cost of selectPivot3(A)
- \bullet T(n) =
- \circ S(n) =
- Combining these, T(n) =

SI 335 (USNA) Unit 7 Spring 2014 24 / 39

• What if q is small? Try q = 3.

SI 335 (USNA)

Unit 7

Spring 2014 25 / 39

Median of Medians

Choosing q

What about q = 5?

SI 335 (USNA)

Unit 7

Spring 2014 26 / 39

QuickSort

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

```
def quickSort1(A):
    n = len(A)
    if n > 1:
        swap(A, 0, choosePivot1(A))
        p = partition(A)
        A[0 : p] = quickSort1(A[0 : p])
        A[p+1 : n] = quickSort1(A[p+1 : n])
    return A
```

SI 335 (USNA) Unit 7 Spring 2014 27 / 39

QuickSort vs QuickSelect

- Again, there will be three versions depending on how the pivots are chosen.
- Crucial difference: QuickSort makes two recursive calls
- Best-case analysis:
- Worst-case analysis:
- We could ensure the best case by using quickSelect3 for the pivoting.
 In practice, this is too slow.

SI 335 (USNA)

Unit 3

Spring 2014 28 / 39

QuickSort

Average-case analysis of quickSort1

Of all n! permutations, (n-1)! have pivot A[0] at a given position i.

Average cost over all permutations:

$$T(n) = \frac{1}{n} \sum_{i=0}^{n-1} (T(i) + T(n-i-1)) + \Theta(n), \qquad n \ge 2$$

Do you want to solve this directly?

Instead, consider the **average depth** of the recursion. Since the cost at each level is $\Theta(n)$, this is all we need.

SI 335 (USNA)

Unit 7

Spring 2014 29 / 39

QuickSort

Average depth of recursion for quickSort1

D(n) = average recursion depth for size- n inputs.

$$H(n) = \begin{cases} 0, & n \leq 1 \\ 1 + \frac{1}{n} \sum_{i=0}^{n-1} \max(H(i), H(n-i-1)), & n \geq 2 \end{cases}$$

- We will get a **good pivot** $(n/4 \le p \le 3n/4)$ with probability $\frac{1}{2}$
- The *larger* recursive call will determine the height (i.e., be the "max") with probability at least $\frac{1}{2}$.

SI 335 (USNA) Unit 7 Spring 2014 30 / 39

QuickSort

Summary of QuickSort analysis

• quickSort1: Choose A[0] as the pivot.

Worst-case: Θ(n²)
Average case: Θ(n log n)

quickSort2: Choose the pivot randomly.

Worst-case: Θ(n²)
Expected case: Θ(n log n)

• quickSort3: Use the median of medians to choose pivots.

• Worst-case: $\Theta(n \log n)$

SI 335 (USNA)

Unit 7

Spring 2014 31 / 39

Sorting without Comparisons

Sorting so far

We have seen:

Quadratic-time algorithms:
 BubbleSort, SelectionSort, InsertionSort

n log n-time algorithms:HeapSort, MergeSort, QuickSort

 $O(n \log n)$ is asymptotically optimal in the comparison model.

So how could we do better?

SI 335 (USNA)

Unit 7

Spring 2014 32 / 39

Sorting without Comparisons

BucketSort

BucketSort is a general approach, not a specific algorithm:

① Split the range of outputs into k groups or **buckets**

2 Go through the array, put each element into its bucket

3 Sort the elements in each bucket (perhaps recursively)

4 Dump sorted buckets out, in order

Notice: No comparisons!

SI 335 (USNA) Unit 7 Spring 2014 33 / 39

```
Sorting without Comparisons
countingSort(A,k)
Precondition 0 \le A[i] < k for all indices i
def countingSort(A, k):
    C = [0] * k # size-k array filled with 0's
     for x in A:
          C[x] = C[x] + 1
     # Now C has the counts.
     \ensuremath{\text{\#}}\xspace P will hold the positions.
     P = [0]
     for i in range(1, k):
          P.append(P[i-1] + C[i-1])
     # Now copy everything into its proper position.
     for x in copy(A):
          A[P[x]] = x
          P[x] = P[x] + 1
     return A
     SI 335 (USNA)
                                 Unit 7
                                                         Spring 2014 34 / 39
```

Sorting without Comparisons

Analysis of CountingSort

Time:

Space:

SI 335 (USNA)

Unit 7

Spring 2014 35 / 39

Sorting without Comparisons

Stable Sorting

Definition

A sorting algorithm is **stable** if elements with the same key stay in the same order.

- Quadratic algorithms and MergeSort are easily made stable
- QuickSort will require extra space to do stable partition.
- CountingSort is stable.

SI 335 (USNA) Unit 7 Spring 2014 36 / 39

Sorting without Comparisons

```
radixSort(A,d,B)
```

Input: Integer array A of length n, and integers d and B such that every

A[i] has d digits $A[i] = x_{d-1}x_{d-2}\cdots x_0$, to the base B.

Output: A gets sorted.

```
def radixSort(A, d, B):
    for i in range(0, d):
        countingSort(A, B) # based on the i'th digits
    return A
```

Works because CountingSort is stable!

Analysis:

SI 335 (USNA)

Unit 7

Spring 2014 37 / 39

Sorting without Comparisons

Summary of Sorting Algorithms

Every algorithm has its place and purpose!

Algorithm	Analysis	In-place?	Stable?
SelectionSort	$\Theta(n^2)$ best and worst	yes	yes
InsertionSort	$\Theta(n)$ best, $\Theta(n^2)$ worst	yes	yes
HeapSort	$\Theta(n \log n)$ best and worst	yes	no
MergeSort	$\Theta(n \log n)$ best and worst	no	yes
QuickSort	$\Theta(n \log n)$ best, $\Theta(n^2)$ worst	yes	no
${\sf CountingSort}$	$\Theta(n+k)$ best and worst	no	yes
RadixSort	$\Theta(d(n+k))$ best and worst	yes	yes

SI 335 (USNA)

Unit 7

Spring 2014 38 / 39

Sorting without Comparisons

Unit 5 Summary

- Selection problem
- Partition
- quickSelect and quickSort
- Average-case analysis
- Randomized algorithms and analysis
- Median of medians
- Non-comparison based sorting
- BucketSort, CountingSort, RadixSort
- Stable sorting

SI 335 (USNA) Unit 7 Spring 2014 39 / 39