Introduction

Comparing Problems

Remember the concepts of Problem, Algorithm, and Program.

We've gotten pretty good at comparing algorithms.
How do we compare problems?

©

Sorted Array Search

©

Sorting

©

Integer Factorization

©

Integer Multiplication

©

Maximum Matching

©

Minimum Vertex Cover

SI335 (USNA) Unit 6 Spring 2014 1/42
Introduction
Computational Complexity
The difficulty of a problem is the worst-case cost of the
best possible algorithm that solves that problem.
Computational complexity is the study and classification of problems
according to their inherent difficulty.
Why study this?
o Want to know when an algorithm is as good as possible.
o Sometimes we want problems to be difficult!
SI 335 (USNA) Unit 6 Spring 2014 2 /42

Introduction

How to compare problems

Big-O, big-©, and big-Q are used to compare two functions.
How can we compare two problems?

Example: Sorting vs. Min
o Forget about any specific algorithms for these problems.

o Instead, develop algorithms to solve one problem
by using any algorithm for the other problem.

o Solving selection using a min algorithm:
o Solving min using a selection algorithm:

o Conclusion?

SI 335 (USNA) Unit 6 Spring 2014

3/ 42

Introduction

Defining tractable and intractable

Cobham-Edmonds thesis:
A problem is tractable only if it can be solved in polynomial time.

What can we say about intractable problems?
o Maybe they're undecidable (e.g., the halting problem)
o Maybe they just seem impossible (e.g., regexp equivalence)
o But not always! (e.g., integer factorization)

Million-dollar question:
Can any problems be verified quickly but not solved quickly?

SI 335 (USNA) Unit 6 Spring 2014 4/ 42

Complexity Basics

Fair comparisons: Machine models

Proving lower bounds on problems requires a careful model of
computation.

Candidates:
o Turing machine
o Clock cycles on your phone
o MIPS instructions

o “Primitive operations”

Theorem

These models are all polynomial-time equivalent.

SI 335 (USNA) Unit 6 Spring 2014 5/ 42

Complexity Basics

Fair comparisons: Bit-length

Input size is our measure of difficulty (n).
It must be measured the same between different problems!
Past examples:

o Factorization ©(y/n) vs. HeapSort ©(nlog n)
o Karatsuba's ©(n'%?) vs. Strassen’s ©(n?8)

o Dijkstra's ©(n?) vs Dijkstra's ©((n + m) log n)

Only measure for this unit: length in bits of the input

S1335 (USNA) Unit 6 Spring 2014 6/ 42

Complexity Basics

Fair comparisons: Decision problems

What about the size of the output? We'll consider only:

Definition: Decision Problems
Problems whose output is YES or NO

Is this a big restriction?

o Search for a number in an array
o El Scheduling

o Integer factorization

o Minimum vertex cover

51335 (USNA) Unit 6 Spring 2014

7/ 42

Complexity Basics

Decision problem comparison

Compare regular factorization with decision problem version:

@ Given instance (N, k) of decision problem,
use computational version to solve it:

@ Given instance N of computational problem,
use decision problem to solve it:

SI 335 (USNA) Unit 6 Spring 2014

8/ 42

Complexity Basics
Formal Problem Definitions
Page 1
SHORTPATH(G,u,Vv,k)

Input: Graph G = (V, E), vertices u and v, integer k
Output: Does G have a path from u to v of length at most k?

Input size and encoding:

LONGPATH(G,u,v,k)

Input: Graph G = (V, E), vertices u and v, integer k
Output: Does G have a path from u to v of length at least k7

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2014

9/ 42

Complexity Basics
Formal Problem Definitions
Page 2

FACT(N,k)
Input: Integers N and k
Output: Does N have a prime factor less than k?

Input size and encoding:

VC(G,k)

Input: Graph G = (V, E), integer k
Output: Does G have a vertex cover with at most k nodes?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2014 10 / 42

Complexity Basics

Our first complexity class

Complexity theory is all about classifying problems based on difficulty.

Definition
The complexity class P consists of all decision problems that can be solved

by an algorithm whose worst-case cost is O(n*), for some constant k, and
where n is the bit-length of the input instance.

This is the “polynomial-time” class. Can you name some members?

SI 335 (USNA) Unit 6 Spring 2014 11/ 42

Complexity Basics

Nice properties of P

When we just worry about polynomial-time, we can be really lazy in
analysis!

Polynomial-time is closed under:
o Addition: nk + n € O(nmax(k0))
In terms of algorithms: one after the other.

o Multiplication: n* - n* € O(n***)
In terms of algorithms: calls within loops.
o Composition: n* o n® € O(n*")
In terms of algorithms: replace every primitive op. with a function call

SI 335 (USNA) Unit 6 Spring 2014 12 / 42

Certificates and NP

Certificates

A certificate for a decision problem is some kind of digital “proof” that the
answer is YES.

The certificate is usually what the output would be from the
“computational version” .

Examples (informally):

o Integer factorization

o Minimum vertex cover
o Shortest path

o Longest path

SI 335 (USNA) Unit 6 Spring 2014 13 / 42

Certificates and NP

Verifiers

A verifier is an algorithm that takes:
@ Problem instance (input) for some decision problem
@ An alleged certificate that the answer is YES

and returns YES iff the certificate is legit.

Principle comes from “guess-and-check” algorithms:
o Finding the answer is tough, but

o checking the answer is easy.

We can write fast verifiers for hard problems!

SI 335 (USNA) Unit 6 Spring 2014 14 / 42

Certificates and NP

Our second complexity class

Definition
The complexity class NP consists of all decision problems that have can
be verified in polynomial-time in the bit-size of the original problem input.

Steps for an NP-proof:
@ Define a notion of certificate
@ Prove that certificates have length O(n¥) for some constant k
® Come up with a verifier algorithm

@ Prove that the algorithm runs in time O(n)
for some (other) constant k

SI 335 (USNA) Unit 6 Spring 2014 15 / 42

Certificates and NP

VC is in NP

VC(G,k): “Does G have a vertex cover with at most k vertices?”

@ Certificate:

@ Certificate size:

@ Verifier algorithm:

@ Algorithm cost:

SI 335 (USNA) Unit 6 Spring 2014 16 / 42

Certificates and NP

FACT is in NP
FACT(N,k): "“Does N have a prime factor less than k?”

@ Certificate:

@ Certificate size:

@ Verifier algorithm:

@ Algorithm cost:

SI 335 (USNA) Unit 6 Spring 2014 17 / 42

Certificates and NP

How to get rich

The BIG question is: Does P equal NP?

The Clay Institute offers $1,000,000 for a proof either way.

o What you would need to prove P = NP:

o What you would need to prove P # NP:

In a nutshell: Is guess-and-check ever the best algorithm?

Spring 2014 18 / 42

S1335 (USNA) Unit 6

Certificates and NP

Alternate meaning of NP

Meaning of the name NP: “Non-deterministic polynomial time"

Non-deterministic Turing machine

o Turing machine with (possibly) multiple transitions for the same
current state and current tape symbol

o Like a computer program with “guesses”

o Connection to randomness?

Why is this equivalent to our definition with certificates and verifiers?

SI 335 (USNA) Unit 6 Spring 2014 19 / 42

Reductions

Reductions

Recall that a reduction from problem A to problem B is a way of solving
problem A using any algorithm for problem B.
Then we know that A is not more difficult than B.

Formally, a reduction from A to B:
@ Takes an instance of problem A as input
@ Uses this to create m instances of problem B

@ Uses the solutions to those m problem B’s to recover the solution for
the original problem A

SI 335 (USNA) Unit 6 Spring 2014 20 / 42

Reductions

Example Linear-Time Reduction
Two problems:

o MMUL(A,B): Compute the product of matrices A and B
o MSQR(A,B): Compute the matrix square A2

Show that the inherent difficulty of MMUL and MSQR is the same.

SI 335 (USNA) Unit 6 Spring 2014 21 /42

Reductions

Polynomial-Time Reduction

Ingredients for analyzing a reduction:
(All will be functions of n, the input size for problem A)

o Number (m) of problem B instances created
o Maximum bit-size of a problem B instance

o Amount of extra work to do the actual reduction.

Polynomial-time reduction: all three ingredients are O(n)
(Often m = 1, sometimes called a “strong reduction”.)

We write A <p B, meaning

“A is polynomial-time reducible to B".

SI 335 (USNA) Unit 6 Spring 2014 22 /42

Reductions

Formal Problem Definitions

Page 3

Minimum Hitting Set: HITSET(L,k)
Input: List L of sets 51, 5,, ..., Sm, integer k.

Output: Is there a set H with size at most k such that every S; N H is not
empty?

Input size and encoding:

HAMCYCLE(G)
Input: Graph G = (V, E)
Output: Does G have a cycle that touches every vertex?

Input size and encoding:

SI 335 (USNA) Unit 6 Spring 2014 23 /42

Reductions

VC reduces to HITSET

SI 335 (USNA) Unit 6 Spring 2014 24 / 42

Reductions

HAMCYCLE reduces to LONGPATH

SI 335 (USNA) Unit 6 Spring 2014 25 / 42

NP-Completeness

Completeness

Definition

A problem B is NP-hard if A <p B for every problem A € NP.

Informally: NP-hard means “at least as difficult as every problem in NP”

Definition
A problem B is NP-complete if B is NP-hard and B € NP.

What is the hardest problem in NP?

SI 335 (USNA) Unit 6 Spring 2014 26 / 42

NP-Completeness

An easy NP-hard proof

Theorem: The halting problem is NP-hard.
Proof:

SI 335 (USNA) Unit 6 Spring 2014 27 / 42

NP-Completeness

Formal Problem Definitions
Page 4
Circuit Satisfiability: CIRCUIT-SAT(C)

Input: Boolean circuit C with AND, OR, and NOT gates,
m inputs, and one output.

Output: Is there a setting of the m inputs that makes the output true?

Input size and encoding:

3-SAT(F)

Input: Boolean formula F in “conjunctive normal form”

(product of sums), with three literals (terms) in every sum (clause):
F=0aV-2xVx3)A(x2VxaVxs)AxaVxeV-oxg) A
Output: Can we assign T/F to the x;'s to make the formula true?

Input size and encoding:

SI335 (USNA) Unit 6 Spring 2014 28 / 42
NP-Completeness
Modeling programs as circuits
Remember this simple model of a computer?
Current Combinational Next
state circuit state
o State contains PC, registers, program, memory
Size is linear in input size and program runtime
o Combinational is a circuit (AND, OR, and NOT gates)
for ALUs, MUXes, control, shifts, adders, etc.
Size is polynomial in size of state.
Lemma
Any decision problem with a polynomial-time algorithm
can be simulated by a polynomial-size boolean circuit.
SI 335 (USNA) Unit 6 Spring 2014 29 / 42

NP-Completeness

CIRCUIT-SAT is NP-hard

SI 335 (USNA) Unit 6 Spring 2014

30/ 42

NP-Completeness

NP-Completeness

Theorem
CIRCUIT-SAT is NP-complete.

Proof: All that's left is to show CIRCUIT-SAT € NP.

o We only have to do this kind of proof once (why?)
o Will this help us prove P = NP?

S1335 (USNA) Unit 6 Spring 2014 31/ 42
More NP-Complete Problems
3-SAT
We want to reduce CIRCUIT-SAT to 3-SAT.
Idea: Every wire in the circuit becomes a variable.
Gate Formula
x
y — Z | (-xVoyVz)A(xV-z)A(yV-z)
; D Z| (xVyV=z)A(=xVz)A(-yVz)
X*>@Z (xVZ)A(=xV=z)
o What do these clauses ensure?
o What other clause do we need to add?
SI 335 (USNA) Unit 6 Spring 2014 32 /42

More NP-Complete Problems

VC

Reduce 3-SAT to VC.

SI 335 (USNA) Unit 6 Spring 2014

33 /42

More NP-Complete Problems

Properties of NP-Complete Problems

There are many known NP-complete problems.

We have seen: LONGPATH, VC, HITSET, HAMCYCLE, CIRCUIT-SAT, 3-SAT.

What's needed to prove a new problem is NP-complete:

Note: All have one-sided verifiers (can't verify NO answer!)

What about FACT?

SI 335 (USNA) Unit 6 Spring 2014 34 /42

More NP-Complete Problems

Frontiers of Complexity Theory

Big open questions:
o Does P = NP? (Probably not)

o Is FACT NP-complete? (Probably not)

©

Is FACT in P? (Hopefully not!)

©

Do true one-way functions exist? (Not if P = NP)

©

Can quantum computers solve NP-hard problems? (Probably not)

©

Where does randomness fit in?

SI 335 (USNA) Unit 6 Spring 2014 35 /42

Traveling Salesman Problem

Traveling Salesman Problem

TSP Definition

Input: Graph G = (V, E)

Output: The shortest cycle that includes every vertex exactly once, or
FAIL if none exist.

o Classic NP-hard problem
o Many important applications

o The worst-case is hard — so what can we do?

SI 335 (USNA) Unit 6 Spring 2014 36 / 42

Traveling Salesman Problem

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

SI335 (USNA)

Unit 6

Spring 2014 37/ 42

Traveling Salesman Problem

Branch and Bound

How to compute the optimal TSP?
@ Pick a starting vertex

@ Explore every path, depth-first
@ Return the least-length Hamiltonian cycle

This is really slow (of course!)

Branch and bound idea:

o Define a quick lower bound on remaining subproblem (MST!)

o Stop exploring when the lower bound exceeds the best-so-far

SI 335 (USNA) Unit 6

Spring 2014 38 /42

Traveling Salesman Problem

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:
Metric TSP

o Edge lengths “obey the triangle inequality”:
w(a, b) + w(b, c) > w(a,c)Va, b,c e V
o What does this mean about the graph?

Euclidean TSP

o Graph can be drawn on a 2-dimensional map.
o Edge weights are just distances!

o (Sub-case of Metric TSP)

SI 335 (USNA) Unit 6 Spring 2014 39 /42

Traveling Salesman Problem

Approximating Metric TSP
Idea: Turn any MST into a TSP tour.

How good is the approximation?

51335 (USNA) Unit 6 Spring 2014 40 / 42

Traveling Salesman Problem

Greedy TSP
Greedy strategies:
o Nearest neighbor

o Smallest “good” edge

SI 335 (USNA) Unit 6 Spring 2014 41/ 42

Traveling Salesman Problem

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:
o Take a cycle with
(a, b) and (c, d)
o Replace with

(a,¢) and (b, d)

SI 335 (USNA) Unit 6 Spring 2014 42 / 42

