
Graphs

Basic Terminology

REVIEW from Data Structures!

G = (V ,E); V is set of n nodes, E is set of m edges

Node or Vertex: a point in a graph

Edge: connection between nodes

Weight: numerical cost or length of an edge

Direction: arrow on an edge

Path: sequence (u0, u1, ... , uk) with every (ui−1, ui) ∈ E

Cycle: path that starts and ends at the same node

SI 335 (USNA) Unit 5 Spring 2014 1 / 49

Graphs

Examples

Roads and intersections

People and relationships

Computers in a network

Web pages and hyperlinks

Makefile dependencies

Scheduling tasks and constraints

(many more!)

SI 335 (USNA) Unit 5 Spring 2014 2 / 49

Graphs

Graph Representations

Adjacency Matrix: n × n matrix of weights.
A[i][j] has the weight of edge (ui , uj).
Weights of non-existent edges usually 0 or ∞.
Size:

Adjacency Lists: Array of n lists;
each list has node-weight pairs for the *outgoing edges* of that node.
Size:

Implicit: Adjacency lists computed on-demand.
Can be used for infinite graphs!

Unweighted graphs have all weights either 0 or 1.
Undirected graphs have every edge in both directions.

SI 335 (USNA) Unit 5 Spring 2014 4 / 49

Graphs

Simple Example

Adjacency Matrix:

a b c d e

a

b

c

d

e

Adjacency List:

SI 335 (USNA) Unit 5 Spring 2014 5 / 49

Graphs

Search Template

def genericSearch(G, start , end):

colors = {}

for u in G.V:

colors[u] = ” w h i t e ”
initialize fringe with node-weight pairs

while len(fringe) > 0:

(u, w1) = fringe.top()

if colors[u] == ” w h i t e ”:
colors[u] = ” g r a y ”
for (v, w2) in G.edgesFrom(u):

if colors[v] == ” w h i t e ”:
fringe.insert ((v, w1+w2))

elif colors[u] == ” g r a y ”:
colors[u] = ” b l a c k ”

else:

fringe.remove ((u, w1))

SI 335 (USNA) Unit 5 Spring 2014 6 / 49

Graphs

Basic Searches

To find a path from u to v ,
initialize fringe with (u, 0),
and exit when we color v to “gray”.

Two choices:

Depth-First Search
fringe is a stack. Updates are pushes.

Breadth-First Search
fringe is a queue. Updates are enqueues.

SI 335 (USNA) Unit 5 Spring 2014 7 / 49

Applications of Search

DAGs

Some graphs are acyclic by nature.

An acyclic undirected graph is a. . .

DAGs (Directed Acyclic Graphs) are more interesting:

Can have more than n − 1 edges

Always at least one “source” and at least one “sink”

Examples:

SI 335 (USNA) Unit 5 Spring 2014 8 / 49

Applications of Search

Linearization

Problem

Input: A DAG G = (V ,E)

Output: Ordering of the n vertices in V as
(u1, u2, ... , un) such that only “forward edges” exist,
i.e., for all (ui , uj) ∈ E), i < j .

(Also called “topological sort”.)

Applications:

SI 335 (USNA) Unit 5 Spring 2014 9 / 49

Applications of Search

def linearize(G):

order = []; colors = {}; fringe = []

for u in G.V:

colors[u] = ” w h i t e ”
fringe.append(u)

while len(fringe) > 0:

u = fringe [-1]

if colors[u] == ” w h i t e ”:
colors[u] = ” g r a y ”
for (v,w2) in G.edgesFrom(u):

if colors[v] == ” w h i t e ”:
fringe.append(v)

elif colors[u] == ” g r a y ”:
colors[u] = ” b l a c k ”
order.insert(0, u)

else:

fringe.pop()

return order

SI 335 (USNA) Unit 5 Spring 2014 10 / 49

Applications of Search

Linearization Example

SI 335 (USNA) Unit 5 Spring 2014 11 / 49

Applications of Search

SI 335 (USNA) Unit 5 Spring 2014 12 / 49

Applications of Search

Properties of DFS

Every vertex in the stack is a child of the first gray vertex below it.

Every descendant of u is a child of u or a descendant of a child of u.

In a DAG, when a node is colored gray its children are all white or
black.

In a DAG, every descendant of a black node is black.

SI 335 (USNA) Unit 5 Spring 2014 13 / 49

Applications of Search

Dijkstra’s Algorithm

Dijkstra’s is a modification of BFS to find shortest paths.

Solves the single source shortest paths problem.

Used millions of times every day (!) for packet routing

Main idea: Use a minimum priority queue for the fringe

Requires all edge weights to be non-negative

SI 335 (USNA) Unit 5 Spring 2014 14 / 49

Applications of Search

Differences from the search template

fringe is a priority queue

No gray nodes! (No post-processing necessary.)

Useful variants:

Keep track of the actual paths as well as path lengths

Stop when a destination vertex is found

SI 335 (USNA) Unit 5 Spring 2014 15 / 49

Applications of Search

Dijkstra example

a

b

6

c
6

d
3

2

e

4

5
1

4

SI 335 (USNA) Unit 5 Spring 2014 16 / 49

def dijkstraHeap(G, start):

shortest = {}

colors = {}

for u in G.V:

colors[u] = ” w h i t e ”
fringe = [(0, start)] # weight goes first for ordering.

while len(fringe) > 0:

(w1 , u) = heappop(fringe)

if colors[u] == ” w h i t e ”:
colors[u] = ” b l a c k ”
shortest[u] = w1

for (v, w2) in G.edgesFrom(u):

heappush(fringe , (w1+w2, v))

return shortest

def dijkstraArray(G, start):

shortest = {}

fringe = {}

for u in G.V:

fringe[u] = infinity

fringe[start] = 0

while len(fringe) > 0:

w1 = min(fringe.values ())

for u in fringe:

if fringe[u] == w1:

break

del fringe[u]

shortest[u] = w1

for (v, w2) in G.edgesFrom(u):

if v in fringe:

fringe[v] = min(fringe[v], w1+w2)

return shortest

Applications of Search

Dijkstra Implementation Options

Heap Unsorted Array

Adj. Matrix

Adj. List mmmmmmmmm

SI 335 (USNA) Unit 5 Spring 2014 19 / 49

All Pairs Shortest

All-Pairs Shortest Paths

Let’s look at a new problem:

Problem: All-Pairs Shortest Paths

Input: A graph G = (V ,E), weighted, and possibly directed.

Output: Shortest path between every pair of vertices in V

Many applications in the precomputation/query model:

SI 335 (USNA) Unit 5 Spring 2014 20 / 49

All Pairs Shortest

Repeated Dijkstra’s

First idea: Run Dijkstra’s algortihm from every vertex.

Cost:

Sparse graphs:

Dense graphs:

SI 335 (USNA) Unit 5 Spring 2014 21 / 49

All Pairs Shortest

Storing Paths

Näıve cost to store all paths:

Memory wall

Better way:

SI 335 (USNA) Unit 5 Spring 2014 22 / 49

a

b

6

c
6

d
3

2

e

4

5
1

4

a b c d e

a

b

c

d

e

All Pairs Shortest

Recursive Approach

Idea for a simple recursive algortihm:

New parameter k : The highest-index vertex visited in any shortest
path.

Basic idea: Path either contains k , or it doesn’t.

Three things needed:

1 Base case: k = −1. Shortest paths are just single edges.

2 Recursive step: Use basic idea above.
Compare shortest path containing k to shortest path without k .

3 Termination: When k = n, we’re done.

SI 335 (USNA) Unit 5 Spring 2014 24 / 49

All Pairs Shortest

Recursive Shortest Paths

Shortest path from i to j using only vertices 0 up to k.

def recShortest(AM , i, j, k):

if k == -1:

return AM[i][j]

else:

option1 = recShortest(AM , i, j, k-1)

option2 = recShortest(AM , i, k, k-1) + recShortest(AM , k, j, k-1)

return min(option1 , option2)

Analysis:

SI 335 (USNA) Unit 5 Spring 2014 25 / 49

All Pairs Shortest

Dynamic Programming Solution

Key idea: Keep overwriting shortest paths, using the same memory

This returns a matrix of ALL shortest path lengths at once!

def FloydWarshall(AM):

L = copy(AM)

n = len(AM)

for k in range(0, n):

for i in range(0, n):

for j in range(0, n):

L[i][j] = min(L[i][j],

L[i][k] + L[k][j]

)

return L

SI 335 (USNA) Unit 5 Spring 2014 26 / 49

a

c

1

f

6

d

6

e

5
4

b

1

1

2

2

a b c d e f

a

b

c

d

e

f

All Pairs Shortest

Analysis of Floyd-Warshall

Time:

Space:

Advantages:

SI 335 (USNA) Unit 5 Spring 2014 28 / 49

All Pairs Shortest

Another Dynamic Solution

What if k is the greatest number of edges in each shortest path?

Let Lk be the matrix of shortest-path lengths with at most k edges.

Base case: k = 1, then L1 = A, the adjacency matrix itself!

Recursive step: Shortest (k + 1)-edge path is the minimum of
k-edge paths, plus a single extra edge.

Termination: Every path has length at most n − 1.
So Ln−1 is the final answer.

SI 335 (USNA) Unit 5 Spring 2014 29 / 49

All Pairs Shortest

Min-Plus Arithmetic

Update step: Lk+1[i , j] = min
0≤`<n

(Lk [i , `] + A[`, j])

Min-Plus Algebra

The + operation becomes “min”

The · operation becomes “plus”

Update step becomes:

SI 335 (USNA) Unit 5 Spring 2014 30 / 49

All Pairs Shortest

APSP with Min-Plus Matrix Multiplication

We want to compute An−1.

Initial idea: Multiply n − 1 times.

Improvement:

Further improvement?

SI 335 (USNA) Unit 5 Spring 2014 31 / 49

All Pairs Shortest

Transitive Closure

Examples of reachability questions:

Is there any way out of a maze?

Is there a flight plan from one airport another?

Can you tell me a is greater than b without a direct comparison?

Precomputation/query formulation: Same graph, many reachability
questions.

Transitive Closure Problem

Input: A graph G = (V ,E), unweighted, possibly directed
Output: Whether u is reachable from v , for every u, v ∈ V

SI 335 (USNA) Unit 5 Spring 2014 32 / 49

All Pairs Shortest

TC with APSP

One vertex is reachable from another if the shortest path isn’t infinite.

Therefore transitive closure can be solved with repeated Dijkstra’s or
Floyd-Warshall. Cost will be Θ(n3).

Why might we be able to beat this?

SI 335 (USNA) Unit 5 Spring 2014 33 / 49

All Pairs Shortest

Back to Algebra

Define Tk as the reachability matrix using at most k edges in a path.

What is T0?
What is T1?

Formula to compute Tk+1:

Therefore transitive closure is just:

SI 335 (USNA) Unit 5 Spring 2014 34 / 49

All Pairs Shortest

The most amazing connection

(Pay attention. Minds will be blown in 3. . . 2. . . 1. . .)

SI 335 (USNA) Unit 5 Spring 2014 35 / 49

Greedy

Optimization Problems

An optimization problem is one where there are many solutions,
and we have to find the “best” one.

Examples we have seen:

Optimal solution can often be made as a series of “moves”
(Moves can be parts of the answer, or general decisions)

SI 335 (USNA) Unit 5 Spring 2014 36 / 49

Greedy

Greedy Design Paradigm

A greedy algorithm solves an optimization problem
by a sequence of “greedy moves”.

Greedy moves:

Are based on “local” information

Don’t require “looking ahead”

Should be fast to compute!

Might not lead to optimal solutions

Example: Counting change

SI 335 (USNA) Unit 5 Spring 2014 37 / 49

Greedy

Appointment Scheduling

Problem

Given n requests for EI appointments, each with start and end time,
how to schedule the maximum number of appointments?

For example:

Name Start End

Billy 8:30 9:00
Susan 9:00 10:00

Brenda 8:00 8:20
Aaron 8:55 9:05
Paul 8:15 8:45
Brad 7:55 9:45
Pam 9:00 9:30

SI 335 (USNA) Unit 5 Spring 2014 38 / 49

Greedy

Greedy Scheduling Options

How should the greedy choice be made?

1 First come, first served

2 Shortest time first

3 Earliest finish first

Which one will lead to optimal solutions?

SI 335 (USNA) Unit 5 Spring 2014 39 / 49

Greedy

Proving Greedy Strategy is Optimal

Two things to prove:

1 Greedy choice is always part of an optimal solution

2 Rest of optimal solution can be found recursively

SI 335 (USNA) Unit 5 Spring 2014 40 / 49

Greedy

Matchings

Pairing up people or resources is a common task.

We can model this task with graphs:

Maximum Matching Problem

Given an undirected, unweighted graph G = (V ,E), find a subset of edges
M ⊆ E such that:

Every vertex touches at most one edge in M

The size of M is as large as possible

Greedy Algorithm: Repeatedly choose any edge that goes between two
unpaired vertices and add it to M.

SI 335 (USNA) Unit 5 Spring 2014 41 / 49

Greedy

Greedy matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2014 42 / 49

Greedy

Maximum matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2014 43 / 49

Greedy

How good is the greedy solution?

Theorem: The optimal solution is at most times the size of one
produced by the greedy algorithm.

Proof:

SI 335 (USNA) Unit 5 Spring 2014 44 / 49

Greedy

Spanning Trees

A spanning tree in a graph is a connected subset of edges that touches
every vertex.

Dijkstra’s algorithm creates a kind of spanning tree.
This tree is created by greedily choosing the “closest” vertex at each step.

We are often interested in a minimal spanning tree instead.

SI 335 (USNA) Unit 5 Spring 2014 45 / 49

Greedy

MST Algorithms

There are two greedy algorithms for finding MSTs:

Prim’s. Start with a single vertex, and grow the tree by choosing the
least-weight fringe edge.
Identical to Dijkstra’s with different weights in the “update” step.

Kruskal’s. Start with every vertex (a forest of trees)
and combine trees by using the lease-weight edge between them.

SI 335 (USNA) Unit 5 Spring 2014 46 / 49

Greedy

MST Examples
Prim’s:

a

b

6

c
6

d
3

2

e

4

5
1

4

Kruskal’s:

a

b

6

c
6

d
3

2

e

4

5
1

4

SI 335 (USNA) Unit 5 Spring 2014 47 / 49

Greedy

Vertex Cover
Problem: Find the smallest set of vertices that touches every edge.

l

h

m

d

i

a

b

e

c

f

j
k

g

SI 335 (USNA) Unit 5 Spring 2014 48 / 49

Greedy

Approximating VC

Approximation algorithm for minimal vertex cover:

1 Find a greedy maximal matching

2 Take both vertices in every edge in the matching

Why is this always a vertex cover?

How good is the approximation?

SI 335 (USNA) Unit 5 Spring 2014 49 / 49

