W	'hy Number Theory?	
Number Theory		
,		
Number Theory is the st	udy of integers and their r	esulting structures.
Why study it?		
5 5	u algorithma wara numbar	theoretic
-	ue algorithms were number	
-	n about new kinds of runni	
	ern cryptosystems rely hea	-
Computers are alwa	ys dealing with integers an	iyway!
SI 335 (USNA)	Unit 3	Spring 2014 1 / 30
Т	he size of an integer	
How big is an integ	er?	
The measure of difficul	Ity for array-based problem	ns was always the size of
the array.		-
M/bat chauld it ha far an	algorithm that takes on it	atomor n?
what should it be for an	algorithm that takes an ir	iteger n!
SI 335 (USNA)	Unit 3	Spring 2014 2 / 30
т	he size of an integer	
	-	
Factorization		

integer *n*? Recall:

- A prime number is divisible only by 1 and itself.
- ${\ensuremath{\, \circ \,}}$ Every integer >1 is either prime or composite.
- Every integer has a unique prime factorization.

It suffices to compute a *single* prime factor of n.

Th	e size of an integer	
leastPrimeFactor		
Input: Positive integer n		
Output: The smallest prin	me p that divides n	
def leastPrimeFacto	or(n):	
i = 2		
while i * i <= if n % i ==		
return	i	
i = i + 1 return n		
1000111 11		
Running time: Is this fast??		
SI 335 (USNA)	Unit 3	Spring 2014 4 / 30
Th	e size of an integer	
Polynomial Time		
The actual running time,	in terms of the size $s \in \Theta($	log n) of n, is $\Theta(2^{s/2})$.
Definition	, , , , , , , , , , , , , , , , , , ,	
	ynomial time if its worst-ca	as a cost is $O(n^{c})$ for
some constant <i>c</i> .		ase cost is $O(n)$ for
Why do we care? The fol	lowing is sort of an algorith	imic "Moore's Law":
Cobham-Edmonds Thes	is	
	utational problem can be fea	asibly solved on a
computer only if it is poly	-	
So our integer factorization	on algorithm is actually real	lly slow!
SI 335 (USNA)	Unit 3	Spring 2014 5 / 30
N	Nodular Arithmetic	
Madulay Avithmatic		
Modular Arithmetic		
Division with Remainde	-	
For any integers <i>a</i> and <i>m</i> $0 \le r < m$ such that	with $m > 0$, there exist int	egers q and r with
	a = qm + r.	
	•	

We write a mod m = r. Modular arithmetic means doing all computations "mod m".

Unit 3

Modular Arithmetic															
Add	Addition mod 15														
+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	0
2	2	3	4	5	6	7	8	9	10	11	12	13	14	0	1
3	3	4	5	6	7	8	9	10	11	12	13	14	0	1	2
4	4	5	6	7	8	9	10	11	12	13	14	0	1	2	3
5	5	6	7	8	9	10	11	12	13	14	0	1	2	3	4
6	6	7	8	9	10	11	12	13	14	0	1	2	3	4	5
7	7	8	9	10	11	12	13	14	0	1	2	3	4	5	6
8	8	9	10	11	12	13	14	0	1	2	3	4	5	6	7
9	9	10	11	12	13	14	0	1	2	3	4	5	6	7	8
10	10	11	12	13	14	0	1	2	3	4	5	6	7	8	9
11	11	12	13	14	0	1	2	3	4	5	6	7	8	9	10
12	12	13	14	0	1	2	3	4	5	6	7	8	9	10	11
13	13	14	0	1	2	3	4	5	6	7	8	9	10	11	12
14	14	0	1	2	3	4	5	6	7	8	9	10	11	12	13
	SI 33	5 (USN	A)				Un	it 3					Spring	g 2014	7 / 30
					Modu	ılar Aritl	nmetic								

Modular Addition

This theorem is the key for efficient computation:

Theorem

For any integers a, b, m with m > 0,

 $(a+b) \mod m = (a \mod m) + (b \mod m) \mod m$

Subtraction can be defined in terms of addition:

• a-b is just a+(-b)

• -b is the number that adds to b to give 0 mod m

• For
$$0 < b < m, -b \mod m = m - b$$

SI 335 (USNA)

Unit 3

Spring 2014 8 / 30

Modular Arithmetic															
Mul	Multiplication mod 15														
×	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1
									-						
	SI 3	35 (US	NA)				U	nit 3					Sprin	g 2014	9 /

	Madulan Arithmetic					
Modular Multiplica	Modular Arithmetic					
There's a similar (and similarly useful!) theorem to addition: Theorem For any integers a, b, m with $m > 0$, (ab) mod $m = (a \mod m)(b \mod m) \mod m$						
• b^{-1} is the number	ivision ? In as multiplication: $a/b =$ that multiplies with b to g (multiplicative inverse) also	ive 1 mod <i>m</i>				
SI 335 (USNA)	Unit 3	Spring 2014 10 / 30				
A number has an inverse	e if there is a 1 in its row o	ər column.				
SI 335 (USNA)	Unit 3	Spring 2014 11 / 30				
Multiplication mod	Modular Arithmetic					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

See all the inverses? SI 335 (USNA) Unit 3 Spring 201

8 7

6 5

4

3 2 1

Spring 2014 12 / 30

Modular Arithmetic
Totient function
This function has a first name; it's Euler.
Definition
The Euler totient function , written $\varphi(n)$, is the number of integers less
than n that don't have any common factors with n .
Of course, this is also the number of invertible integers mad n
Of course, this is also the number of invertible integers mod n .
When <i>n</i> is prime, $\varphi(n) = n - 1$. What about $\varphi(15)$?
SI 335 (USNA) Unit 3 Spring 2014 13 / 30
Modular Arithmetic
Modular Exponentiation
This is the most important operation for cryptography!
Example : Compute 3 ²⁰¹³ mod 5.

SI 335 (USNA)

Unit 3

Spring 2014 14 / 30

The Euclidean Algorithm

Computing GCD's

```
The greatest common divisor (GCD) of two integers is the largest
number which divides them both evenly.
Euclid's algorithm (c. 300 B.C.!) finds it:
GCD (Euclidean algorithm)
Input: Integers a and b
Output: g, the gcd of a and b
def gcd(a, b):
     if b == 0:
          return a
     else:
          return gcd(b, a % b)
Correctness relies on two facts:
  • gcd(a, 0) = a
  • gcd(a, b) = gcd(b, a \mod b)
                                                          Spring 2014
     SI 335 (USNA)
                                 Unit 3
                                                                   15 / 30
```

The Euclidean Algorithm								
Analysis of Euclidean Algorithm								
5	0							
SI 335 (USNA)	Unit 3	Spring 2014	16 / 30					
		·, ·S	- / - 2					
The Euc	The Euclidean Algorithm							
Worst-case of Euclidean Algorithm								

Definition

The Fibonacci numbers are defined recursively by:

- $f_0 = 0$
- $f_1 = 1$
- $f_n = f_{n-2} + f_{n-1}$ for $n \ge 2$

The worst-case of Euclid's algorithm is computing $gcd(f_n, f_{n-1})$.

SI 335 (USNA)

Unit 3

Spring 2014 17 / 30

Extended Euclidean Algorithm

Computing gcd(a, m) tells us whether $a^{-1} \mod m$ exists. This algorithm computes it:

The Euclidean Algorithm

```
Input: Integers a and b
Output: Integers g, s, and t such that g = GCD(a,b) and as + bt = g.
def xgcd(a, b):
    if b == 0:
        return (a, 1, 0)
    else:
        q, r = divmod(a, b)
        (g, s0, t0) = xgcd(b, r)
        return (g, t0, s0 - t0*q)
```

Notice: $bt = g \mod a$. So if the gcd is 1, this finds the multiplicative inverse!

Cryptography

Basic setup:

(1) Alice has a message M that she wants to send to Bob.

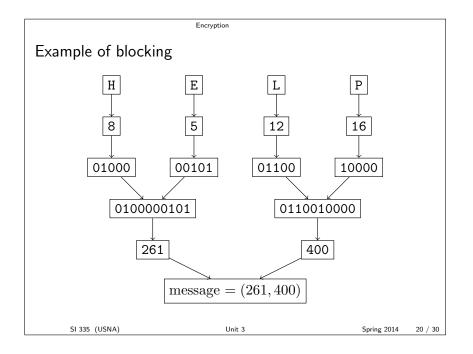
Encryption

- ② She encrypts *M* into another message *E* which is gibberish to anyone except Bob, and sends *E* to Bob.
- 3 Bob decrypts E to get back the original message M from Alice.

Generally, M and E are just big numbers of a *fixed size*.

So the full message must be encoded into bits, then split into *blocks* which are encrypted separately.

Α	В	С	D	Е	F	G	Η	Ι	J	Κ	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
N 13	0 14	P 15	Q 16	R 17	S 18	T 19	U 20	V 21	W 22	X 23	Y 24	Z 25



Public Key Encryption

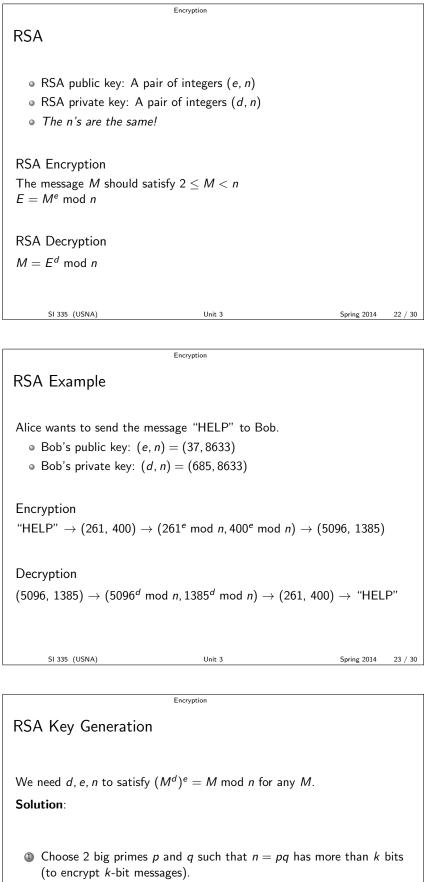
Traditionally, cryptography required Alice and Bob to have a **pre-shared key**, secret to only them.

Encryption

Along came the internet, and suddenly we want to communicate with people/businesses/sites we haven't met before.

The solution is **public-key cryptography**:

- Bob has two keys: a public key and a private key
- ² The public key is used for encryption and is published publicly
- 3 The private key is used for decryption and is a secret only Bob knows.



- 2 Choose e such that $2 \le e < (p-1)(q-1)$ and gcd((p-1)(q-1), e) = 1.
- 3 Compute $d = e^{-1} \mod \varphi(n)$ with the Extended GCD algorithm

	Analysis of RSA	
RSA Analysis		
We want to know how mu	ch the following cost:	
 Generating a public/p Encrypting or docrypt 	rivate key pair ing with the proper keys	
 Decrypting of decrypt Decrypting without the 		
What would it take for this	s to be a secure cryptosy	vstem?
	s to be a secure cryptosy	Stelli
SI 335 (USNA)	Unit 3	Spring 2014 25 / 30
Г	Analysis of RSA	
Drimality Testing		
Primality Testing		
PSA key constation require	as computing random pri	imac
RSA key generation require	es computing random pri	imes.
	are everywhere! In partic	ular, about 1 in every <i>k</i>
 integers with k bits is Bad news: Testing for 	prime. or primality seems difficu	lt.
0	o do this faster than fact	
SI 335 (USNA)	Unit 3	Spring 2014 26 / 30
[
	Analysis of RSA	
Miller-Rabin Test		
Input: Positive integer n Output: True if n is prime,	, otherwise False (prob a	ıbly)
def probably_prime(
a = random.rand: d = n-1	range(2, n-1)	
k = 0 while d % 2 ==	0:	
d = d // 2 k = k + 1		
x = a**d % n	1. noture T	
<pre>if x**2 % n == for r in range()</pre>	1, k):	
x = x * 2 %	n	

if x == 1: return False if x == n-1: return True return False SI 335 (USNA) Unit 3 Spring 2014 27 / 30

	Analysis of RSA	
Cost analysis for <i>k</i> -bi	t encryption	
The main conchilities we r	and area	
The main capabilities we r Generating random p		
 Computing XGCDs 	intes	
 Modular exponentiation 	on	
The cost of key generation	on is $O(k^4)$	
The cost of encryption ar	nd decryption are $O(k^3)$.	
SI 335 (USNA)	Unit 3	Spring 2014 28 / 30
	Analysis of RSA	
Security of RSA		
We need to assert, witho u	It proof that	
	-	she minate have (d. m)
	ypt a message is to have t	
	he private key is to first c pute $\varphi(n)$ is to factor <i>n</i> .	compute $\varphi(n)$.
	for factoring a number the	ast is the product of
two large primes in po		
If all this is true, then as t		-
always outpace the cost of	encrypting/decrypting wi	ith the proper keys.
SI 335 (USNA)	Unit 3	Spring 2014 29 / 30
	Analysis of RSA	
Summary		
Summary		
We acquired the following	number-theoretic tools	
		vision noworing)
	addition, multiplication, di	- ,
	th the Euclidean algorithm	
• Finnanty testing (fast	:) and factorization (slow)	
All these pieces are used ir	n implementing and analy:	zing RSA.