
The course

From Designing a Digital Future

Progress in algorithms beats Moore’s law

Everyone knows Moore’s Law — a prediction made in 1965 by Intel co-founder
Gordon Moore that the density of transistors in integrated circuits would continue
to double every 1 to 2 years.

Even more remarkable — and even less widely understood — is that in many
areas, performance gains due to improvements in algorithms have vastly exceeded
even the dramatic performance gains due to increased processor speed.

In the field of numerical algorithms, the improvement can be quantified. Here is
just one example. A benchmark production planning model solved using linear
programming would have taken 82 years to solve in 1988, using the computers
and the linear programming algorithms of the day. Fifteen years later — in 2003
— this same model could be solved in roughly 1 minute, an improvement by a
factor of roughly 43 million. Of this, a factor of roughly 1,000 was due to
increased processor speed, whereas a factor of roughly 43,000 was due to
improvements in algorithms!

SI 335 (USNA) Unit 1 Spring 2014 1 / 30

The course

Why study algorithms?

It’s all about efficiency!

We will make heavy use of abstractions.

Solving difficult problems, solving them fast, and figuring out when
problems simply cannot be solved fast.

SI 335 (USNA) Unit 1 Spring 2014 2 / 30

Problem, Algorithm, Program

Definition of a Problem

A problem is a collection of input-output pairs that specifies the desired
behavior of an algorithm.

Example (Sorting Problem)

[20, 3, 14, 7], [3, 7, 14, 20]

[13, 18], [13, 18]

[5, 4, 3, 2, 1], [1, 2, 3, 4, 5]

...

SI 335 (USNA) Unit 1 Spring 2014 3 / 30

Problem, Algorithm, Program

Algorithm Definition

An algorithm is a specific way to actually compute the function defined by
some problem.

Must produce correct output for every valid input

Must terminate in a finite number of steps

Behavior is undefined on invalid input

Independent of any programming language or architecture

SI 335 (USNA) Unit 1 Spring 2014 4 / 30

Problem, Algorithm, Program

One-to-many relationships

Problem

Algorithm

...

Algorithm

Program

...

Program

Program

Algorithm

SI 335 (USNA) Unit 1 Spring 2014 5 / 30

Three foci of this course

Components of Algorithms

Design

Analysis Implementation

SI 335 (USNA) Unit 1 Spring 2014 6 / 30

Three foci of this course

Foci of the course

Design: How to come up with efficient algorithms for all sorts of
problems

Analysis: What it means for an algorithm to be “efficient”, and how
to compare two different algorithms for the same problem.

Implementation: Faithfully translating a given algorithm to an
actual, usable, fast program.

SI 335 (USNA) Unit 1 Spring 2014 7 / 30

Case Study: Array Search

Sorted Array Search Problem

Problem: Sorted array search
Input:

A, sorted array of integers

x, number to search for

Output:

An index k such that A[k] = x , or NOT_FOUND

SI 335 (USNA) Unit 1 Spring 2014 8 / 30

Case Study: Array Search

Algorithm: linearSearch

Input: (A, x), an instance of the Sorted Array Search problem

i = 0

while i < length(A) and A[i] < x do

i = i + 1

if i < length(A) and A[i] = x then return i

else return NOT_FOUND

SI 335 (USNA) Unit 1 Spring 2014 9 / 30

Case Study: Array Search

Algorithm: binarySearch

Input: (A, x), an instance of the Sorted Array Search problem

left = 0

right = length(A)-1

while left < right do

middle = floor((left+right)/2)

if x <= A[middle] then

right = middle

else if x > A[middle] then

left = middle +1

end if

end while

if A[left] = x then return left

else return NOT_FOUND

SI 335 (USNA) Unit 1 Spring 2014 10 / 30

Case Study: Array Search

Algorithm: gallopSearch
Input: (A, x), an instance of the Sorted Array Search problem

i = 1

while i < length(A) and A[i] <= x do

i = i * 2

left = floor(i/2)

right = min(i, length(A)) - 1

return binarySearch(A[left.. right])

SI 335 (USNA) Unit 1 Spring 2014 11 / 30

Analyzing Correctness

Loop Invariants

1. Initialization: The invariant is true at the beginning of the first time
through the loop.

2. Maintenance: If the invariant is true at the beginning of one iteration,
it’s also true at the beginning of the next iteration.

3. Termination: After the loop exits, the invariant PLUS the loop
termination condition tells us something useful.

SI 335 (USNA) Unit 1 Spring 2014 12 / 30

Implementation

Choices in Implementation

What programming language to use

What precise language constructs to use (For example, should the list
be an array or a linked list? Should we actually call the “length”
function on the list every time, or save it in a variable?)

What compiler to use, and what compiler options to compile with.

What machine/architecture to run on

SI 335 (USNA) Unit 1 Spring 2014 13 / 30

Implementation

Timing Experiments

Input x Result linear binary gallop

[6 7 8] 4 NOT 5 5 7
[27 50 62 78 ... 180] 62 2 6 7 12
[3 6 23 27 ... 990] 500 NOT 76 14 25

[7 11 14 17 ... 99997] 19 4 8 31 15
[14 17 28 58 ... 999992] 966 99 128 53 27

[0 2 2 3 ... 9998] 9999 NOT 12108 35 59

Which one is the fastest?

SI 335 (USNA) Unit 1 Spring 2014 14 / 30

Implementation

Measure of Difficulty

Need a way to put timings in context — should spend more time on
harder inputs.

Need to sort the data so we can make sense of it.

Solution: assign a difficulty measure to each input.

Most common measure: input size, n.

SI 335 (USNA) Unit 1 Spring 2014 15 / 30

Implementation

Search times plot

SI 335 (USNA) Unit 1 Spring 2014 16 / 30

Implementation

Making a single function for run-time

Best-case: Choose the best (smallest) time for each size

Worst-case: Choose the worst (largest) time for each size

Average-case: Choose the average of all the timings for each size

Of these, the worst-case time is the usually the most significant.

SI 335 (USNA) Unit 1 Spring 2014 17 / 30

Implementation

Worst-case of search algorithms

SI 335 (USNA) Unit 1 Spring 2014 18 / 30

Analysis

Shortcomings of experimental comparison

It depends on the machine.

It depends on the implementation.

It depends on the examples chosen for each size.

It depends on the sizes chosen.

Can’t describe how much better one algorithm is than another.

Implementations are expensive (time, cost) to create.

Formal analysis will overcome these shortcomings, but requires some
more simplifications.

SI 335 (USNA) Unit 1 Spring 2014 19 / 30

First Simplification: Abstract Machine

Abstract Machine

To achieve machine independence, we usually count the number of
operations in an abstract machine model such as a RAM.

That’s too hardcore for us. Instead, we will count:

Definition (Primitive Operation)

A primitive operation is one that can be performed in a fixed number of
steps on any modern architecture.

Intentionally vague definition

Examples: integer addition, memory lookup, comparison

SI 335 (USNA) Unit 1 Spring 2014 20 / 30

First Simplification: Abstract Machine

Primitive count analysis

SI 335 (USNA) Unit 1 Spring 2014 21 / 30

Second Simplification: Asymptotic Notation

Asymptotic Notation

Counting primitive operations exactly is too precise and doesn’t help
to compare algorithms

Solution: Big-O, Big-Ω, Big-Θ

Definition (Big-O Notation)

Given two functions T (n) and f (n), that always return positive numbers,
T (n) ∈ O(f (n)) if and only if there exist constants c, n0 > 0 such that, for
all n ≥ n0, T (n) ≤ cf (n).

SI 335 (USNA) Unit 1 Spring 2014 22 / 30

Second Simplification: Asymptotic Notation

Big-O Simplification Rules 1

Constant multiple rule

If T (n) ∈ O(f (n)) and c > 0, then T (n) ∈ O(c ∗ g(n)).

Domination rule

If T (n) ∈ O(f (n) + g(n)), and f (n) ∈ O(g(n)), then T (n) ∈ O(g(n)).
(In this case, we usually say that g “dominates” f .

Transitivity rule

If T (n) ∈ O(f (n)) and f (n) ∈ O(g(n)), then T (n) ∈ O(g(n)).

SI 335 (USNA) Unit 1 Spring 2014 23 / 30

Second Simplification: Asymptotic Notation

Big-O Simplification Rules 2

Addition rule

If T1(n) ∈ O(f (n)) and T2(n) ∈ O(g(n)), then
T1(n) + T2(n) ∈ O(f (n) + g(n)).

Multiplication rule

If T1(n) ∈ O(f (n)) and T2(n) ∈ O(g(n)), then
T1(n) ∗ T2(n) ∈ O(f (n) ∗ g(n)).

Trivial rules

For any positive-valued function f :

1 ∈ O(f (n))

f (n) ∈ O(f (n))

SI 335 (USNA) Unit 1 Spring 2014 24 / 30

Second Simplification: Asymptotic Notation

Big-Ω and Big-Θ

Definition (Big-Ω)

T (n) ∈ Ω(f (n)) if and only if f (n) ∈ O(T (n)).

Definition (Big-Θ)

T1(n) ∈ Θ(T2(n)) if and only if both T1(n) ∈ O(T2(n)) and
T2(n) ∈ O(T1(n)).

Which of the previous rules apply for these?

SI 335 (USNA) Unit 1 Spring 2014 25 / 30

Second Simplification: Asymptotic Notation

Worst-case running times

linearSearch is Θ(n) in the worst case

binarySearch is Θ(log n) in the worst case

gallopSearch is Θ(log n) in the worst case too!

What does this all mean?

SI 335 (USNA) Unit 1 Spring 2014 26 / 30

Second Simplification: Asymptotic Notation

WARNING

Don’t mix up worst/best/average case
with big-O/big-Ω/big-Θ.

SI 335 (USNA) Unit 1 Spring 2014 27 / 30

A different difficulty measure

Different difficulty measure

Observation: linearSearch and gallopSearch perform better when
the search key x is very small.

Alternate difficulty measure: m, the least index such that A[m] ≥ x .

Re-do the analysis in terms of m and n.

SI 335 (USNA) Unit 1 Spring 2014 28 / 30

A different cost function

A different cost function

What if we counted comparisons instead of primitive operations?

linearSearch:

n + 1 comparisons in the worst case

binarySearch:

lg n + 1 comparisons in the worst case

gallopSearch:

2 lg n comparisons in the worst case

Here it is fine to be precise!

SI 335 (USNA) Unit 1 Spring 2014 29 / 30

A different cost function

Conclusions

Which search algorithm is the best?

Design, Analysis, Implementation

Problem, Algorithm, Program

Best-case, worst-case, and average-case

Big-O, Big-Ω, Big-Θ

SI 335 (USNA) Unit 1 Spring 2014 30 / 30

