Comparing Problems

Remember the concepts of Problem, Algorithm, and Program.
We've gotten pretty good at comparing algorithms.
How do we compare problems?

- Sorted Array Search
- Sorting
- Integer Factorization
- Integer Multiplication
- Selection
- Maximum Matching
- Minimum Vertex Cover

SI 335 (USNA)

The difficulty of a problem is the worst-case cost of the best possible algorithm that solves that problem.

Computational complexity is the study and classification of problems according to their inherent difficulty.

Why study this?

- Want to know when an algorithm is as good as possible.
- Sometimes we want problems to be difficult!

How to compare problems

Big- O, big- - , and big- Ω are used to compare two functions.
How can we compare two problems?

Example: Sorting vs. Selection

- Forget about any specific algorithms for these problems.
- Instead, develop algorithms to solve one problem by using any algorithm for the other problem.
- Solving selection using a sorting algorithm:
- Solving sorting using a selection algorithm:
- Conclusion?

Defining tractable and intractable

Cobham-Edmonds thesis:
A problem is tractable only if it can be solved in polynomial time.
What can we say about intractable problems?

- Maybe they're undecidable (e.g., the halting problem)
- Maybe they just seem impossible (e.g., regexp equivalence)
- But not always! (e.g., integer factorization)

Million-dollar question:

Can any problems be verified quickly but not solved quickly?

SI 335 (USNA)

Fair comparisons: Machine models

Proving lower bounds on problems requires a careful model of computation.

Candidates:

- Turing machine
- Clock cycles on your phone
- MIPS instructions
- "Primitive operations"

Theorem
These models are all polynomial-time equivalent.

Fair comparisons: Bit-length

Input size is our measure of difficulty (n).
It must be measured the same between different problems!
Past examples:

- Factorization $\Theta(\sqrt{n})$ vs. HeapSort $\Theta(n \log n)$
- Karatsuba's $\Theta\left(n^{1.59}\right)$ vs. Strassen's $\Theta\left(n^{2.81}\right)$
- Dijkstra's $\Theta\left(n^{2}\right)$ vs Dijkstra's $\Theta((n+m) \log n)$

Only measure for this unit: length in bits of the input

Fair comparisons: Decision problems

What about the size of the output? We'll consider only:
Definition: Decision Problems
Problems whose output is YES or NO

Is this a big restriction?

- Selection
- El Scheduling
- Integer factorization
- Minimum vertex cover

SI 335 (USNA)

Decision problem comparison

Compare regular factorization with decision problem version:
(1) Given instance (N, k) of decision problem, use computational version to solve it:
(2) Given instance N of computational problem, use decision problem to solve it:

Formal Problem Definitions

Page 1
$\operatorname{SHORTPATH}(\mathrm{G}, \mathrm{u}, \mathrm{v}, \mathrm{k})$
Input: Graph $G=(V, E)$, vertices u and v, integer k
Output: Does G have a path from u to v of length at most k ?
Input size and encoding:

LONGPATH (G, u,v,k)
Input: Graph $G=(V, E)$, vertices u and v, integer k
Output: Does G have a path from u to v of length at least k ?
Input size and encoding:

Formal Problem Definitions

Page 2
FACT (N, k)
Input: Integers N and k
Output: Does N have a prime factor less than k ?
Input size and encoding:

VC (G,k)
Input: Graph $G=(V, E)$, integer k
Output: Does G have a vertex cover with at most k nodes?
Input size and encoding:

SI 335 (USNA)
Unit 6

Complexity Basics

Our first complexity class

Complexity theory is all about classifying problems based on difficulty.

Definition
The complexity class \mathbf{P} consists of all decision problems that can be solved by an algorithm whose worst-case cost is $O\left(n^{k}\right)$, for some constant k, and where n is the bit-length of the input instance.

This is the "polynomial-time" class. Can you name some members?

Nice properties of \mathbf{P}

When we just worry about polynomial-time, we can be really lazy in analysis!

Polynomial-time is closed under:

- Addition: $n^{k}+n^{\ell} \in O\left(n^{\max (k, \ell)}\right)$

In terms of algorithms: one after the other.

- Multiplication: $n^{k} \cdot n^{\ell} \in O\left(n^{k+\ell}\right)$

In terms of algorithms: calls within loops.

- Composition: $n^{k} \circ n^{\ell} \in O\left(n^{k \ell}\right)$

In terms of algorithms: replace every primitive op. with a function call

Certificates

A certificate for a decision problem is some kind of digital "proof" that the answer is YES.

The certificate is usually what the output would be from the "computational version".

Examples (informally):

- Integer factorization
- Minimum vertex cover
- Shortest path
- Longest path

SI 335 (USNA)
Certificates and NP
Verifiers
A verifier is an algorithm that takes:
(1) Problem instance (input) for some decision problem
(2) An alleged certificate that the answer is YES
and returns YES iff the certificate is legit.
Principle comes from "guess-and-check" algorithms:

- Finding the answer is tough, but
- checking the answer is easy.
We can write fast verifiers for hard problems!
SI 335 (USNA) Unit 6

Certificates and NP

Our second complexity class

Definition
The complexity class NP consists of all decision problems that have can be verified in polynomial-time in the bit-size of the original problem input.

Steps for an NP-proof:
(1) Define a notion of certificate
(2) Prove that certificates have length $O\left(n^{k}\right)$ for some constant k
(3) Come up with a verifier algorithm
(4) Prove that the algorithm runs in time $O\left(n^{k}\right)$
for some (other) constant k

VC is in NP
$\operatorname{VC}(\mathrm{G}, \mathrm{k})$: "Does G have a vertex cover with at most k vertices?"
(1) Certificate:
(2) Certificate size:
(3) Verifier algorithm:
(4) Algorithm cost:

SI 335 (USNA)

Certificates and NP

FACT is in NP

FACT (N, k) : "Does N have a prime factor less than k ?"
(1) Certificate:
(2) Certificate size:
(3) Verifier algorithm:
(4) Algorithm cost:

SI 335 (USNA)
Unit 6

Certificates and NP
How to get rich

The BIG question is: Does \mathbf{P} equal NP?
The Clay Institute offers $\$ 1,000,000$ for a proof either way.

- What you would need to prove $\mathbf{P}=\mathbf{N P}$:
- What you would need to prove $\mathbf{P} \neq \mathbf{N P}$:

In a nutshell: Is guess-and-check ever the best algorithm?

Alternate meaning of NP

Meaning of the name NP: "Non-deterministic polynomial time"

Non-deterministic Turing machine

- Turing machine with (possibly) multiple transitions for the same current state and current tape symbol
- Like a computer program with "guesses"
- Connection to randomness?

Why is this equivalent to our definition with certificates and verifiers?

SI 335 (USNA)
Unit 6

Reductions

Recall that a reduction from problem A to problem B is a way of solving problem A using any algorithm for problem A.
Then we know that A is not more difficult than B.
Formally, a reduction from A to B :
(1) Takes an instance of problem A as input
(2) Uses this to create m instances of problem B
(3) Uses the solutions to those m problem B's to recover the solution for the original problem A

Example Linear-Time Reduction

Two problems:

- MMUL (A, B) : Compute the product of matrices A and B
- $\operatorname{MSQR}(\mathrm{A}, \mathrm{B}):$ Compute the matrix square A^{2}

Show that the inherent difficulty of MMUL and MSQR is the same.

Polynomial-Time Reduction

Ingredients for analyzing a reduction:
(All will be functions of n, the input size for problem A)

- Number (m) of problem B instances created
- Maximum bit-size of a problem B instance
- Amount of extra work to do the actual reduction.

Polynomial-time reduction: all three ingredients are $O\left(n^{k}\right)$
(Often $m=1$, sometimes called a "strong reduction".)
We write $A \leq_{\mathbf{p}} B$, meaning
" A is polynomial-time reducible to B ".

SI 335 (USNA)

Reductions

Formal Problem Definitions

Page 3
Minimum Hitting Set: HITSET (L, k)
Input: List L of sets $S_{1}, S_{2}, \ldots, S_{m}$, integer k.
Output: Is there a set H with size at most k such that every $S_{i} \cap H$ is not empty?

Input size and encoding:

HAMCYCLE (G)

Input: Graph $G=(V, E)$
Output: Does G have a cycle that touches every vertex?
Input size and encoding:

SI 335 (USNA)

VC reduces to HITSET

HAMCYCLE reduces to LONGPATH

Completeness

Definition
A problem B is NP-hard if $A \leq \mathbf{P}$ B for every problem $A \in \mathbf{N P}$.

Informally: NP-hard means "at least as difficult as every problem in NP"

Definition
A problem B is NP-complete if B is $\mathbf{N P}$-hard and $B \in \mathbf{N P}$.

What is the hardest problem in NP?

An easy NP-hard proof
Theorem: The halting problem is NP-hard.
Proof:

Formal Problem Definitions

Page 4
Circuit Satisfiability: CIRCUIT-SAT (C)
Input: Boolean circuit C with AND, OR, and NOT gates,
m inputs, and one output.
Output: Is there a setting of the m inputs that makes the output true?
Input size and encoding:

3-SAT(F)

Input: Boolean formula F in "conjunctive normal form"
(product of sums), with three literals (terms) in every sum (clause):
$F=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4} \vee x_{5}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge \cdots$
Output: Can we assign T / F to the x_{i} 's to make the formula true?
Input size and encoding:

SI 335 (USNA)
Unit 6
Spring $2013 \quad 28 / 42$

NP-Completeness

Modeling programs as circuits

Remember this simple model of a computer?

- State contains PC, registers, program, memory Size is linear in input size and program runtime
- Combinational is a circuit (AND, OR, and NOT gates)
for ALUs, MUXes, control, shifts, adders, etc.
Size is polynomial in size of state.

Lemma

Any decision problem with a polynomial-time algorithm can be simulated by a polynomial-size boolean circuit.

$$
\text { SI } 335 \text { (USNA) Unit } 6
$$

NP-Completeness

Theorem
CIRCUIT-SAT is NP-complete.
Proof: All that's left is to show CIRCUIT-SAT \in NP.

- We only have to do this kind of proof once (why?)
- Will this help us prove $\mathbf{P} \neq \mathbf{N P}$?

SI 335 (USNA)
Unit 6

3-SAT	More NP-Complete Problems
3-S	

We want to reduce CIRCUIT-SAT to 3 -SAT.
Idea: Every wire in the circuit becomes a variable.

- What do these clauses ensure?
- What other clause do we need to add?

Properties of NP-Complete Problems

There are many known NP-complete problems.
We have seen: LONGPATH, VC, HITSET, HAMCYCLE, CIRCUIT-SAT, 3-SAT.
What's needed to prove a new problem is NP-complete:

Note: All have one-sided verifiers (can't verify NO answer!)
What about FACT?

SI 335 (USNA)
Unit 6

More NP-Complete Problems

Frontiers of Complexity Theory

Big open questions:

- Does $\mathbf{P}=\mathbf{N P}$? (Probably not)
- Is FACT NP-complete? (Probably not)
- Is FACT in P? (Hopefully not!)
- Do true one-way functions exist? (Not if $\mathbf{P}=\mathbf{N P}$)
- Can quantum computers solve NP-hard problems? (Probably not)
- Where does randomness fit in?

Traveling Salesman Problem

TSP Definition
Input: Graph $G=(V, E)$
Output: The shortest cycle that includes every vertex exactly once, or FAIL if none exist.

- Classic NP-hard problem
- Many important applications
- The worst-case is hard - so what can we do?

MSTs and TSP

Theorem: Length of TSP tour is at least the size of a MST.

Traveling Salesman Problem

Branch and Bound

How to compute the optimal TSP?
(1) Pick a starting vertex
(2) Explore every path, depth-first
(3) Return the least-length Hamiltonian cycle

This is really slow (of course!)
Branch and bound idea:

- Define a quick lower bound on remaining subproblem (MST!)
- Stop exploring when the lower bound exceeds the best-so-far

SI 335 (USNA)	Unit 6	Spring 2013	$38 / 42$

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP

- Edge lengths "obey the triangle inequality": $w(a, b)+w(b, c) \geq w(a, c) \forall a, b, c \in V$
- What does this mean about the graph?

Euclidean TSP

- Graph can be drawn on a 2-dimensional map.
- Edge weights are just distances!
- (Sub-case of Metric TSP)

Approximating Metric TSP

Idea: Turn any MST into a TSP tour.

How good is the approximation?

Traveling Salesman Problem

Local Refinement

Idea: Take any greedy solution, then make it better.

2-OPT refinement:

- Take a cycle with
(a, b) and (c, d)
- Replace with
(a, c) and (b, d)

