	Introduction	
Comparing Problem	S	
Remember the concepts	of Problem, Algorithm, and Prog	çram.
We've gotten pretty good How do we compare prob	d at comparing algorithms. blems?	
Sorted Array Search		
 Sorting 		
Integer Factorization	1	
Integer Multiplicatio	'n	
 Selection 		
Maximum Matching		
 Minimum Vertex Co 	ver	
SI 335 (USNA)	Unit 6	Spring 2013 1 / 42
	Introduction	
Computational Com	plexity	
Computational complexit according to their inhere	y is the study and classification on the difficulty.	of problems
Why study this? • Want to know when	an algorithm is as good as poss	ible.
• Sometimes we want	problems to be difficult!	
SI 335 (USNA)	Unit 6	Spring 2013 2 / 42
	Introduction	
How to compare pro	oblems	
Big- O , big- Θ , and big- Ω	are used to compare two function	ins.
How can we compare two	o problems?	
Example: Sorting vs. Sele	ection	
 Forget about any sp 	ecific algorithms for these proble	ms.
 Instead, develop algo 	orithms to solve one problem	
by using any algorit	thm for the other problem.	
 Solving selection usi 		
Solving corting using	ng a sorting algorithm:	
• Solving soluting using	ng a sorting algorithm: g a selection algorithm:	
Conclusion?	ng a sorting algorithm: g a selection algorithm:	
Conclusion?	ng a sorting algorithm: g a selection algorithm:	

('employity Device		
Fair comparisons: De	acision problems		
What about the size of the	e output? We'll consider only :		
Definition: Decision Prob	olems		
Problems whose output is	YES or NO		
Is this a big restriction?			
 Selection 			
 El Scheduling 			
 Integer factorization 			
 Minimum vertex cove 	r		
			- /
SI 335 (USNA)	Unit 6	Spring 2013	7 / 42
C	Complexity Basics		
Decision problem cor	nparison		
Compare regular factorizat	ion with decision problem version:		
Given instance (N, k) use computational ver) of decision problem, rsion to solve it:		
② Given instance N of c	computational problem.		
use decision problem	to solve it:		
SI 335 (USNA)	Unit 6	Spring 2013	8 / 42
	Complexity Basics		
Formal Problem Defi	nitions		
SHORTPATH(G,u,v,k)			
Input: Graph $G = (V, E)$, Output: Doos G have a p	, vertices u and v , integer k	· 1/2	

Input size and encoding:

LONGPATH(G,u,v,k) **Input**: Graph G = (V, E), vertices u and v, integer k**Output**: Does G have a path from u to v of length at least k?

Input size and encoding:

Complexity Basics

Formal Problem Definitions

Page 2

FACT(N,k)
Input: Integers N and k
Output: Does N have a prime factor less than k?

Input size and encoding:

VC(G,k)

Input: Graph G = (V, E), integer k **Output**: Does G have a vertex cover with at most k nodes?

Input size and encoding:

SI 335 (USNA)

Spring 2013 10 / 42

Complexity Basics

Our first complexity class

Complexity theory is all about classifying problems based on difficulty.

Unit 6

Definition

The complexity class **P** consists of all decision problems that can be solved by an algorithm whose worst-case cost is $O(n^k)$, for some constant k, and where n is the bit-length of the input instance.

This is the "polynomial-time" class. Can you name some members?

SI 335 (USNA)

Unit 6

Spring 2013 11 / 42

Complexity Basics

Nice properties of **P**

When we just worry about polynomial-time, we can be *really lazy* in analysis!

Polynomial-time is closed under:

- Addition: n^k + n^ℓ ∈ O(n^{max(k,ℓ)}) In terms of algorithms: one after the other.
- Multiplication: n^k ⋅ n^ℓ ∈ O(n^{k+ℓ}) In terms of algorithms: calls within loops.
- **Composition**: $n^k \circ n^\ell \in O(n^{k\ell})$ In terms of algorithms: replace every primitive op. with a function call

Certificates and NP			
Certificates			
A <i>certificate</i> for a decision problem is some kind of digital "proof" that the answer is YES.			
The certificate is usually what the output <i>would be</i> from the "computational version".			
Examples (informally): Integer factorization 			
 Minimum vertex cover 			
 Shortest path 			
 Longest path 			
SI 335 (USNA) Unit 6 Spring 2013 13 / 42			
Verifiers			
 A verifier is an algorithm that takes: Problem instance (input) for some decision problem An alleged certificate that the answer is YES and returns YES iff the certificate is legit. Principle comes from "guess-and-check" algorithms: Finding the answer is tough, but checking the answer is easy. We can write fast verifiers for hard problems! 			
SI 335 (USNA) Unit 6 Spring 2013 14 / 42			
Certificates and NP			
Our second complexity class			
Definition The complexity class NP consists of all decision problems that have can be <i>verified</i> in polynomial-time in the bit-size of the original problem input.			

Steps for an $\boldsymbol{NP}\text{-}\mathsf{proof:}$

- Define a notion of certificate
- 2 Prove that certificates have length $O(n^k)$ for some constant k
- 3 Come up with a verifier algorithm
- Prove that the algorithm runs in time O(n^k) for some (other) constant k

Ce	ertificates and NP				
VC is in NP					
VC(G,k): "Does G have a	VC(G.k): "Does G have a vertex cover with at most k vertices?"				
① Certificate:					
② Certificate size:					
③ Verifier algorithm:					
④ Algorithm cost:					
SI 335 (USNA)	Unit 6	Spring 2013 16 / 42			
		oping 2010 10 / 12			
Ce	ertificates and NP				
FACT is in NP					
FACT(N,k): "Does N have	e a prime factor less than k	?''			
• Cartificator					
U Certificate:					
② Certificate size:					
③ Verifier algorithm:					
④ Algorithm cost:					
SI 335 (USNA)	Unit 6	Spring 2013 17 / 42			
Ce	rtificates and NP				
How to get rich					

The **BIG** question is: Does P equal NP?

The Clay Institute offers \$1,000,000 for a proof either way.

- What you would need to prove $\mathbf{P} = \mathbf{NP}$:
- What you would need to prove $\mathbf{P} \neq \mathbf{NP}$:

In a nutshell: Is guess-and-check ever the best algorithm?

Unit 6

	Reductions		
Polynomial-Time Re	duction		
Ingredients for analyzin	a reduction		
(All will be functions of <i>n</i>	, the input size for probl	lem A)	
• Number (<i>m</i>) of prob	em B instances created	,	
 Maximum <i>bit-size</i> of 	a problem B instance		
Amount of extra wor	k to do the actual reduc	ction.	
Polynomial-time reduct (Often $m = 1$, sometimes	ion: all three ingredients called a "strong reducti	s are <i>O</i> (<i>n^k</i>) ion".)	
We write <i>A</i> ≤ _P <i>B</i> , meanin "A is polynomial-time red	ng ucible to B".		
SI 335 (USNA)	Unit 6	Spring 2013	22 / 42
	Reductions		
Formal Problem Def	initions		
Minimum Hitting Set: F	ITTSFT(I b)		
Input: List / of sets S ₁	$S_{2} = S_{m}$ integer k		
Output : Is there a set <i>H</i> empty?	with size at most k such	h that every $S_i \cap H$ i	s not
Input size and encoding:			
HAMCYCLE(G)			
Input: Graph $G = (V F)$			
Output : Does G have a	, cycle that touches every	vertex?	
Input size and encoding:	-		
. 0			

SI 335 (USNA)

Unit 6

Spring 2013 23 / 42

	Reductions	
VC reduces to HITSET		
SI 335 (USNA)	Unit 6	Spring 2013 24 / 42

HAMCYCLE reduces to	O LONGPATH	
SI 335 (USNA)	Unit 6	Spring 2013 25 / 42
	NP-Completeness	
Completeness		
completeness		
Definition		
A problem B is NP -hard	if $A \leq_{\mathbf{P}} B$ for every proble	em $A \in \mathbf{NP}$.
Informally: NP -hard mea	ns "at least as difficult as	every problem in NP "
Definition		
Definition A problem B is NP -comp	lete if B is NP -hard as	nd B \in NP.
Definition A problem B is NP -comp	lete if B is NP -hard a	nd B \in NP.
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP -hard at lem in NP ?	nd B \in NP.
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP- hard as lem in NP ?	nd B \in NP.
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP -hard at lem in NP ?	nd B \in NP .
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP- hard an lem in NP ?	nd B \in NP.
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP -hard at lem in NP ? _{Unit 6}	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP -hard at lem in NP ? _{Unit 6}	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl	lete if B is NP -hard as lem in NP ? Unit 6	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA)	lete if B is NP -hard at lem in NP ? Unit 6	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr	lete if B is NP -hard at lem in NP ? Unit 6	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B \in NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B ∈ NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B ∈ NP. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B \in NP.
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B ∈ NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd $B \in NP$. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd B ∈ NP. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd $B \in NP$. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP -hard at lem in NP ? Unit 6 NP-Completeness roof roblem is NP -hard.	nd $B \in \mathbf{NP}$. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd B ∈ NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probles SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd B ∈ NP. Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probles SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd B ∈ NP . Spring 2013 26 / 42
Definition A problem B is NP -comp What is the hardest probl SI 335 (USNA) An easy NP -hard pr Theorem : The halting pr Proof :	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd $B \in \mathbf{NP}$. Spring 2013 26 / 42
Definition A problem B is NP-comp What is the hardest probles SI 335 (USNA) An easy NP-hard pr Theorem: The halting pr Proof:	lete if B is NP-hard at lem in NP? Unit 6 NP-Completeness roof roblem is NP-hard.	nd $B \in \mathbf{NP}$. Spring 2013 26 / 42

CI	RCUIT-SAT is NF	P -hard		
	SI 225 (USNA)	Unit 6	Spring 2013	20 / 42
	SI 335 (USNA)	Unit 6	Spring 2013	30 / 42

NP-Completeness

NP-Completeness

Theorem *CIRCUIT-SAT is* **NP**-*complete*.

Proof: All that's left is to show CIRCUIT-SAT \in **NP**.

- We only have to do this kind of proof once (why?)
- Will this help us prove $\mathbf{P} \neq \mathbf{NP}$?

SI 335 (USNA)

Spring 2013 31 / 42

More NP-Complete Problems

3-SAT

We want to reduce CIRCUIT-SAT to 3-SAT.

Idea: Every wire in the circuit becomes a variable.

Unit 6

Unit 6

- What do these clauses ensure?
- What other clause do we need to add?

SI 335 (USNA)

Spring 2013 32 / 42

	More NP-Complete Proble	ems		
VC				
Reduce 3-	-SAT to VC.			
SI 335	(USNA)	Unit 6	Spring 2013	33 / 42

More NP-C	omplete Problems	
There are many known N We have seen: LONGPATH	P -complete problems. , VC, HITSET, HAMCYCLE,	CIRCUIT-SAT, 3-SAT.
What's needed to prove a	new problem is NP -com	plete:
Note: All have one-sided	verifiers (can't verify NO	answer!)
What about FACT?		
SI 335 (USNA)	Unit 6	Spring 2013 34 / 42
More NP-C	Complete Problems	
Frontiers of Complex	kity Theory	
· ·	5	
Big open questions:		
• Does $\mathbf{P} = \mathbf{NP}$? (Pro	bably not)	
• Is FACT NP -complete	e? (Probably not)	
a la FACT in D ? (Hono	fully potl)	
• IS PROT IN • : (Hope		
Do true one-way fund	ctions exist? (Not if $\mathbf{P}=$	NP)
Can quantum computivity	ters solve NP -hard proble	ems? (Probably not)
Where does random	ness fit in?	
SI 335 (USNA)	Unit 6	Spring 2013 35 / 42
Traveling	Salesman Problem	
Traveling Salesman	Problem	
TSP Definition		
Input: Graph $G = (V, E)$)	
Output: The shortest cyc	cle that includes every ver	tex exactly once, or
FAIL if none exist.		
Classic NP-hard prob	olem	
Many important app	lications	
• The worst-case is had	rd — so what can we do?	,
		Series 2012 26 / 42

SI 335 (USNA)

Unit 6

Spring 2013 38 / 42

Traveling Salesman Problem

Simplified TSP

Solving the TSP is really hard; some special cases are a bit easier:

Metric TSP

- Edge lengths "obey the triangle inequality": $w(a, b) + w(b, c) \ge w(a, c) \forall a, b, c \in V$
- What does this mean about the graph?

Euclidean TSP

- Graph can be drawn on a 2-dimensional map.
- Edge weights are just distances!
- (Sub-case of Metric TSP)

Traveling Salesman Problem

