	Graphs		
Basic Terminology			
Busic Terminology			
REVIEW from Data Structure	s!		
G = (V, E): V is set of n nod	es. E is set of m ed	ges	
• Node or Vertex: a point	in a graph		
• Edge: connection betwee	n nodes		
Weight: numerical cost of the second seco	or length of an edge		
 Direction: arrow on an e 	dge		
• Path : sequence (u_0, u_1, \ldots)	\ldots, u_k) with every (<i>u</i>	$(u_{i-1}, u_i) \in E$	
• Cycle: path that starts a	nd ends at the same	node	
5			
SI 335 (USNA)	Unit 6	Spring 2013	1 / 49
	Graphs		
Evamples			
Examples			

- Roads and intersections
- People and relationships
- Computers in a network
- Web pages and hyperlinks
- Makefile dependencies
- Scheduling tasks and constraints
- (many more!)

SI 335 (USNA)

Unit 6

Spring 2013 2 / 49

Search Template

```
def genericSearch(G, start, end):
    colors = {}
    for u in G.V:
        colors[u] = "white"
    # initialize fringe with node-weight pairs
    while len(fringe) > 0:
        (u, w1) = fringe.top()
        if colors[u] == "white":
            colors[u] = "gray"
            for (v, w2) in G.edgesFrom(u):
                 if colors[v] == "white":
                     fringe.insert((v, w1+w2))
        elif colors[u] == "gray":
            colors[u] = "black"
        else:
            fringe.remove((u, w1))
```

Graphs

Graphs Basic Searches		
To find a path from u to v , initialize fringe with $(u, 0)$, and exit when we color v to "gray".		
 Two choices: Depth-First Search fringe is a stack. Updates are pushes. 		
• Breadth-First Search fringe is a queue. Updates are enqueues.		
SI 335 (USNA) Unit 6	Spring 2013	7 / 49
 Applications of Search DAGS Some graphs are acyclic by nature. An acyclic undirected graph is a DAGs (Directed Acyclic Graphs) are more interesting: Can have more than n – 1 edges Always at least one "source" and at least one "sink" Examples: 	Spring 2013	8 / 49
Applications of Search		
Problem Input: A DAG $G = (V, E)$		
Output : Ordering of the <i>n</i> vertices in <i>V</i> as (u_1, u_2, \ldots, u_n) such that only "forward edges" exist,		
i.e., for all $(u_i, u_j) \in E$), $i < j$.		
i.e., for all $(u_i, u_j) \in E$), $i < j$. (Also called "topological sort".)		

Applications of Search def linearize(G): order = []; colors = {}; fringe = [] for u in G.V:colors[u] = "white" fringe.append(u) while len(fringe) > 0: u = fringe[-1] if colors[u] == "white": colors[u] = "gray" for (v,w2) in G.edgesFrom(u): if colors[v] == "white": fringe.append(v) elif colors[u] == "gray": colors[u] = "black" order.insert(0, u) else: fringe.pop() return order SI 335 (USNA) Unit 6 Spring 2013 10 / 49

	Applications of Search		
SI 335 (USNA)	Unit 6	Spring 2013	12 / 49

Арр	lications of Search		
Properties of DFS			
• Every vertex in the s	tack is a child of the first gr	ay vertex below	it.
 Every descendant of 	<i>u</i> is a child of <i>u</i> or a descen	dant of a child c	of <i>u</i> .
In a DAG, when a no	ode is colored gray its childre	en are all white c	or
black.			
In a DAG, every desc	endant of a black node is bl	ack.	
SI 335 (USNA)	Unit 6	Spring 2013	13 / 49
Арр	lications of Search		
Dijkstra's Algorithm			
Diikstra's is a modificatio	n of RES to find shortest na	the	
Solves the single source si	hortest paths problem.		
Used millions of times eve	ery day (!) for packet routing	g	
Main idea: Use a minimu	um priority queue for the frir	ıge	
Requires all edge weigh	ts to be non-negative		
SI 335 (USNA)	Unit 6	Spring 2012	14 / 40
		Spring 2013	1. / 49
Арр	lications of Search		

Differences from the search template

- ${\ensuremath{\, \bullet \,}}$ fringe is a priority queue
- No gray nodes! (No post-processing necessary.)

Useful variants:

- Keep track of the actual paths as well as path lengths
- Stop when a destination vertex is found


```
def dijkstraHeap(G, start):
    shortest = {}
    colors = {}
    for u in G.V:
        colors[u] = "white"
    fringe = [(0, start)] # weight goes first for ordering.
    while len(fringe) > 0:
        (w1, u) = heappop(fringe)
        if colors[u] == "white":
            colors[u] = "black"
            shortest[u] = w1
            for (v, w2) in G.edgesFrom(u):
                heappush(fringe, (w1+w2, v))
    return shortest
```

```
def dijkstraArray(G, start):
    shortest = \{\}
    fringe = {}
    for u in G.V:
        fringe[u] = infinity
    fringe[start] = 0
    while len(fringe) > 0:
        w1 = min(fringe.values())
        for u in fringe:
            if fringe[u] == w1:
                break
        del fringe[u]
        shortest[u] = w1
        for (v, w2) in G.edgesFrom(u):
            if v in fringe:
                fringe[v] = min(fringe[v], w1+w2)
    return shortest
```

Diikstra	Appli Implementat	cations of Search		
Dijkstra	implementat			
	1	Hean	Uncorted Array	1
		пеар		
	Adj. Matrix			
	Adi, List			1
SI 335	(USNA)	Unit 6	Spi	ring 2013 19 / 49
		Greedy		
Optimiza	ation Probler	ns		
An optimiz	zation problem i	s one where there	are many solutions	,
Evamplas		Jest one.		
Examples	we have seen.			
Ontinual or	lution on often			
(Moves ca	n be parts of th	e answer, or genera	al decisions)	
SI 335	(USNA)	Unit 6	Spi	ring 2013 20 / 49
		Greedy		
Greedv F)esign Parad	igm		
		0		

A greedy algorithm solves an optimization problem by a sequence of "greedy moves".

Greedy moves:

- Are based on "local" information
- Don't require "looking ahead"
- Should be fast to compute!
- Might **not** lead to optimal solutions

Example: Counting change

Unit 6

					1
Appointment Sche	duling Gree	edy			
Problem					
Given <i>n</i> requests for FL	appointme	nts eac	h with start	and end time	
how to schedule the ma	iximum nu	mber of	appointme	nts?	
For example:					
	Name	Start	End		
	Billy	8:30	9:00		
	Susan	9:00	10:00		
	Brenda	8:00	8:20		
	Aaron	8:55	9:05 9:45		
	Paul Brad	0:15 7.55	0:45 0:45		
	Pam	0.00 01.00	9.40 9.30		
		5.00	5.50		
SI 335 (USNA)		Unit 6		Spring 2012	22 / 40
0.000 (00144)		00		5pmg 2013	/
	Gre	edv.			
Greedy Scheduling	Options				
How should the greedv	choice be	made?			
I First come, first se	rved				
② Shortest time first					
③ Earliest finish first					
Which one will lead to e	optimal sol	utions?			
		11-2-6		C · 00	22 / 22
51 335 (USNA)		Unit 6		Spring 2013	23 / 49
	C	edv.			
	Gre	euy			
Proving Greedy Str	rategy is	Optin	nal		
Two things to prove:					
 Greedy choice is all 	ways part o	of an op	timal soluti	on	
,		· · - P			

Rest of optimal solution can be found recursively

Unit 6

Unit 6

SI 335 (USNA)

Spring 2013 25 / 49

	Greedy			
How good is the gre	edy solution?			
Theorem : The optimal solution is at most <u>times</u> the size of one produced by the greedy algorithm.				
Proof:				
SI 335 (USNA)	Unit 6	Spring 2013 28 / 49		
	Greedy			
Spanning Trees				
A <i>spanning tree</i> in a grap every vertex.	oh is a connected subset o	of edges that touches		
Dijkstra's algorithm creat	tes a kind of spanning tree	e.		
This tree is created by gr	eedily choosing the "clos	est" vertex at each step.		
We are often interested in	n a minimal spanning tree	e instead.		
SI 335 (USNA)	Unit 6	Spring 2013 29 / 49		
	Greedy			
MST Algorithms				
There are two greedy alg	gorithms for finding MSTs	5:		
• Drim's Start with a	single vertex and grow t	the tree by choosing the		
least-weight fringe e Identical to Dijkstra'	dge. 's with different weights in	n the "update" step.		
		· · ·		
 Kruskal's. Start wit and combine trees b 	h every vertex (a <i>forest</i> o y using the lease-weight e	t trees) edge between them.		
		-		
SI 335 (USNA)	Unit 6	Spring 2013 30 / 49		

Many applications in the precomputation/query model:

SI 335 (USNA)

Unit 6

Spring 2013 32 / 49

Greedy		
Repeated Dijkstra's		
First idea: Run Dijkstra's algortihm from every vertex.		
Cost: • Sparse graphs:		
Dense graphs:		
SI 335 (USNA) Unit 6	Spring 2013	33 / 49

Recursive Approach

Idea for a simple recursive algortihm:

• New parameter k: The highest-index vertex visited in any shortest path.

Greedy

• Basic idea: Path either contains k, or it doesn't.

Three things needed:

- **(D)** Base case: k = -1. Shortest paths are just single edges.
- Recursive step: Use basic idea above.
 Compare shortest path containing k to shortest path without k.
- **3** Termination: When k = n, we're done.

Unit 6

Greedy **Dynamic Programming Solution** Key idea: Keep overwriting shortest paths, using the same memory This returns a matrix of ALL shortest path lengths at once! def FloydWarshall(AM): L = copy(AM)n = len(AM)for k in range(0, n): for i in range(0, n): for j in range(0, n): L[i][j] = min(L[i][j], L[i][k] + L[k][j]) return L SI 335 (USNA) Unit 6 Spring 2013 38 / 49

	Greedy		
Analysis of Floyd-W	arshall		
• Time:			
• Space:			
Advantages:			
SI 335 (USNA)	Unit 6	Spring 2013	40 / 49
	Greedy		
Another Dynamic So	olution		
,			
What if <i>k</i> is the greatest	number of edges in each	shortest path?	
What if k is the greatest Let L_k be the matrix of s	number of edges in each hortest-path lengths with	shortest path? at most <i>k</i> edges.	
What if k is the greatest Let L_k be the matrix of s • Base case : $k = 1$, t	number of edges in each hortest-path lengths with then $L_1 = A$, the adjacence	shortest path? at most <i>k</i> edges. cy matrix itself!	
 What if k is the greatest Let L_k be the matrix of s Base case: k = 1, t Recursive step: Sho k-edge paths, plus a 	number of edges in each shortest-path lengths with then $L_1 = A$, the adjacence prtest $(k + 1)$ -edge path is single extra edge.	shortest path? at most <i>k</i> edges. cy matrix itself! is the minimum of	
 What if k is the greatest Let L_k be the matrix of s Base case: k = 1, t Recursive step: Sho k-edge paths, plus a Termination: Every 	number of edges in each shortest-path lengths with then $L_1 = A$, the adjacend ortest $(k + 1)$ -edge path is single extra edge. path has length at most	shortest path? at most k edges. by matrix itself! is the minimum of n-1.	
 What if k is the greatest Let L_k be the matrix of s Base case: k = 1, t Recursive step: Shoke the step of the st	number of edges in each shortest-path lengths with then $L_1 = A$, the adjacend ortest $(k + 1)$ -edge path is single extra edge. In path has length at most answer.	shortest path? at most k edges. by matrix itself! is the minimum of n-1.	
 What if k is the greatest Let L_k be the matrix of s Base case: k = 1, t Recursive step: Sho k-edge paths, plus a Termination: Every So L_{n-1} is the final a 	number of edges in each shortest-path lengths with then $L_1 = A$, the adjacence ortest $(k + 1)$ -edge path is single extra edge. To path has length at most answer.	shortest path? at most k edges. by matrix itself! is the minimum of n-1.	

Min-Plus Arithmetic Update step: $\mathcal{L}_{k+1}[i, j] = \min_{0 \le \ell < n} (\mathcal{L}_k[i, \ell] + \mathcal{A}[\ell, j])$ Min-Plus Algebra • The + operation becomes "min" • The \cdot operation becomes "plus" Update step becomes: State (USNA) Unit 6 Spring 2013

42 / 49

Greedy

	Greedy		1
APSP with Min-Plus	Matrix Multiplica	tion	
We want to compute A^{n-1} .			
 Initial idea: Multiply n 	-1 times.		
• Improvement:			
• Further improvement?			
SI 335 (USNA)	Unit 6	Spring 2013	43 / 49
	Crack		
Transitive Closure	Greedy		
Francisco - Constato billio - an			
Examples of reachability qu	lestions:		
 Is there a flight plan fr 	rom one airport anothe	r?	
 Can you tell me a is gi 	reater than <i>b</i> without a	a direct comparison?	
Precomputation/query form questions.	nulation: Same graph,	many reachability	
Transitive Closure Probler	m		
Input : A graph $G = (V, E$ Output : Whether u is read), unweighted, possibly hable from <i>v</i> , for ever	v directed $y \ u, v \in V$	
SI 335 (USNA)	Unit 6	Spring 2013	44 / 49
	Greedy		
TC with APSP			
One vertex is reachable from	m another if the shorte	est path isn't infinite	
Therefore transitive closure Floyd-Warshall. Cost will b	can be solved with replete $\Theta(n^3)$.	peated Dijkstra's or	
Why might we be able to b	eat this?		

[
Back to Algebra	Greedy		
Define T_k as the reachability What is T_0 ? What is T_1 ? Formula to compute T_{k+1} : Therefore transitive closure is	matrix using at most k edg just:	es in a pat	th.
SI 335 (USNA)	Unit 6	Spring 2013	46 / 49
	Greedy		
The most amazing conr	nection		
(Pay attention. Minds will be	blown in 321)		
SI 335 (USNA)	Unit 6	Spring 2013	47 / 49

