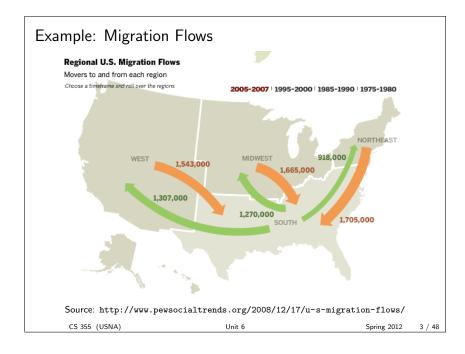


- Makefile dependencies
- Scheduling tasks and constraints
- (many more!)

CS 355 (USNA)

Unit 6

Spring 2012 2 / 48

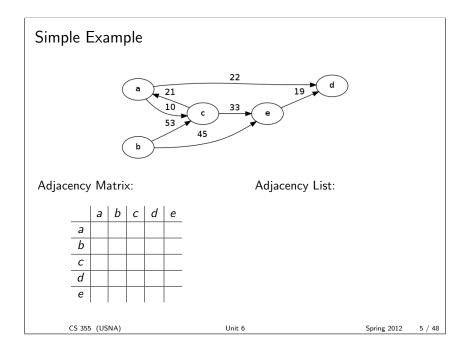


Graph Representations

- Adjacency Matrix: $n \times n$ matrix of weights. A[i][j] has the weight of edge (u_i, u_j) . Weights of non-existent edges usually 0 or ∞ . Size:
- Adjacency Lists: Array of *n* lists; each list has node-weight pairs for the *outgoing edges* of that node. Size:
- **Implicit**: Adjacency lists computed on-demand. Can be used for infinite graphs!

Unweighted graphs have all weights either 0 or 1. **Undirected graphs** have every edge in both directions.

CS 355 (USNA) Unit 6 Spring 2012 4 / 48



Search Template

search(G)

```
1 colors := size-n array of "white"s
2 fringe := new collection
  // initialize fringe with node-weight pairs
3
4 while fringe not empty do
5
     (u,w1) := fringe.top()
     if colors[u] = "white" then
6
7
       colors[u] := "gray"
       for each outgoing edge (u,v,w2) of u do
8
          fringe.update(v,w1+w2)
9
       end for
10
     else if colors[u] = "gray" then
11
       colors[u] := "black"
12
13
       fringe.remove(u,w1)
     end if
14
  end while
15
  CS 355 (USNA)
                         Unit 6
                                             Spring 2012
                                                     6 / 48
```

Basic Searches

To find a path from u to v, initialize fringe with (u, 0), and exit when we color v to "gray".

Two choices:

- Depth-First Search fringe is a stack. Updates are pushes.
- Breadth-First Search fringe is a queue. Updates are enqueues.

CS 355 (USNA)

Spring 2012 7 / 48

DAGs

Some graphs are acyclic by nature.

An acyclic undirected graph is a...

DAGs (Directed Acyclic Graphs) are more interesting:

- Can have more than n-1 edges
- Always at least one "source" and at least one "sink"

Unit 6

• Examples:

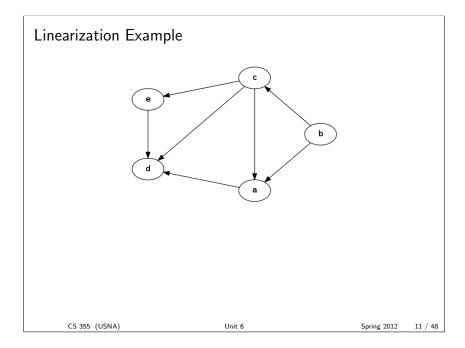
CS 355 (USNA)

Unit 6

Spring 2012 8 / 48

Linearization Problem Input: A DAG G = (V, E)Output: Ordering of the *n* vertices in *V* as $(u_1, u_2, ..., u_n)$ such that only "forward edges" exist, i.e., for all $(u_i, u_j) \in E$), i < j. (Also called "topological sort".) Applications: (S 355 (USNA) Unit 6 Spring 2012 9 / 48

```
linearize(G)
  1 order := empty list
  2 colors := size-n array of "white"s
  3 fringe := new stack
  4 add every node in V to fringe
  5 while fringe not empty do
      (u,w1) := fringe.top()
  6
      if colors[u] = "white" then
  7
        colors[u] := "gray"
  8
        for each outgoing edge (u,v,w2) of u do
  9
           fringe.push(v,w2)
 10
        end for
 11
      else if colors[u] = "gray" then
 12
        colors[u] := "black"
 13
         order := u, order
 14
         fringe.remove(u,w1)
 15
      end if
 16
 17 end while
    CS 355 (USNA)
                         Unit 6
                                            Spring 2012
                                                   10 / 48
```



1				
1				
	CS 355 (USNA)	Unit 6	Spring 2012	12 / 48
	CS 355 (USNA)	Unit 6	Spring 2012	12 / 48
	CS 355 (USNA)	Unit 6	Spring 2012	12 / 48



Dijkstra's Algorithm

Dijkstra's is a modification of BFS to find shortest paths.

Solves the single source shortest paths problem.

Used millions of times every day (!) for packet routing

Main idea: Use a minimum priority queue for the fringe

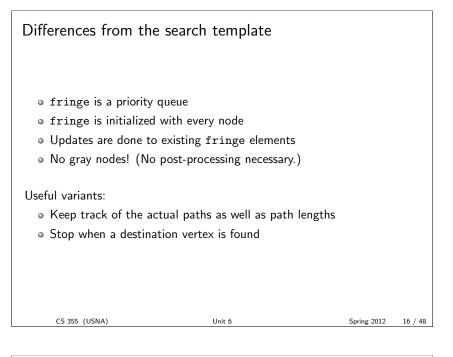
Requires all edge weights to be non-negative

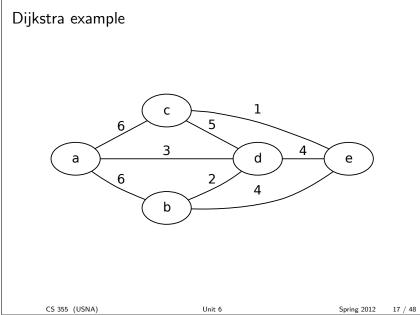
CS 355 (USNA)

Unit 6

Spring 2012 14 / 48

```
dijkstra(G,u)
  1 colors := size-n array of "white"s
  2 fringe := new minimum priority queue
  3 for each v in V do
      add (v, infinity) to fringe
  4
  5 fringe.update(u, 0)
  6 while fringe not empty do
  7
      (u,w1) := fringe.removeMin()
  8
      colors[u] := "black"
  9
      print (u,w1)
      for each edge (u,v,w2) with colors[v]="white" do
 10
        fringe.update(v,w1+w2)
 11
      end for
 12
 13 end while
```





Dijkstra	Implementat	ion Options		
		Heap	Unsorted Array	
	Adj. Matrix			
	Adj. List			
			1	
CS 355	(USNA)	Unit 6	Spri	ng 2012 18 / 48

Optimization Problems

An optimization problem is one where there are many solutions, and we have to find the "best" one.

Examples we have seen:

Optimal solution can often be made as a series of "moves" (Moves can be parts of the answer, or general decisions)

CS 355 (USNA)

Unit 6

Spring 2012 19 / 48

Greedy Design Paradigm

A greedy algorithm solves an optimization problem by a sequence of "greedy moves".

Greedy moves:

- Are based on "local" information
- Don't require "looking ahead"
- Should be fast to compute!
- Might not lead to optimal solutions

Example: Counting change

CS 355 (USNA)

Unit 6

Spring 2012 20 / 48

Appointment Scheduling

Problem

Given n requests for El appointments, each with start and end time, how to schedule the maximum number of appointments?

For example:

	Name	Start	End	
	Billy	8:30	9:00	
	Susan	9:00	10:00	
	Brenda	8:00	8:20	
	Aaron	8:55	9:05	
	Paul	8:15	8:45	
	Brad	7:55	9:45	
	Pam	9:00	9:30	
CS 355 (USNA)		Unit 6		Spring 201

Greedy Scheduling O	ptions							
How should the greedy ch	oice be made?							
 First come, first serve 	ed							
② Shortest time first	② Shortest time first							
③ Earliest finish first								
Which one will lead to optimal solutions?								
		6	22 / 42					
CS 355 (USNA)	Unit 6	Spring 2012	22 / 48					

Proving Greedy Strategy is Optimal

Two things to prove:

- Greedy choice is always part of an optimal solution
- 2 Rest of optimal solution can be found recursively

CS 355 (USNA)

Unit 6

Spring 2012 23 / 48

Matchings

Pairing up people or resources is a common task.

We can model this task with graphs:

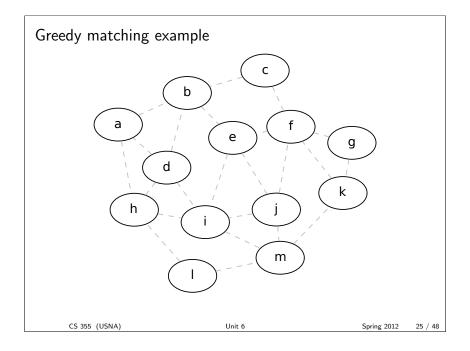
Maximum Matching Problem

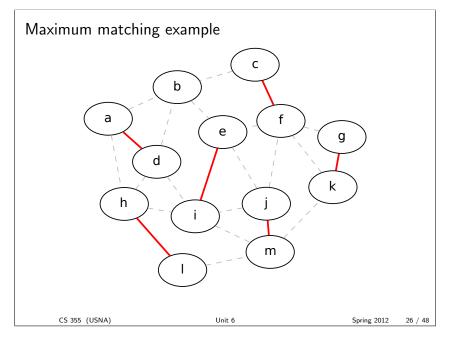
Given an undirected, unweighted graph G = (V, E), find a subset of edges $M \subseteq E$ such that:

- ${\scriptstyle \bullet}$ Every vertex touches at most one edge in M
- The size of *M* is as large as possible

Greedy Algorithm: Repeatedly choose any edge that goes between two unpaired vertices and add it to M.

Unit 6





How good is the greedy solution?

Theorem: The optimal solution is at most ____ times the size of one produced by the greedy algorithm.

Proof:

Unit 6

Spanning Trees

A *spanning tree* in a graph is a connected subset of edges that touches every vertex.

Dijkstra's algorithm creates a kind of spanning tree. This tree is created by **greedily** choosing the "closest" vertex at each step.

We are often interested in a minimal spanning tree instead.

CS 355 (USNA)

Unit 6

Spring 2012 28 / 48

MST Algorithms

There are two **greedy** algorithms for finding MSTs:

• **Prim's**. Start with a single vertex, and grow the tree by choosing the least-weight fringe edge.

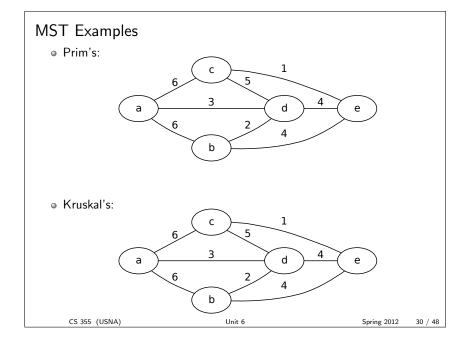
Identical to Dijkstra's with different weights in the "update" step.

• **Kruskal's**. Start with every vertex (a *forest* of trees) and combine trees by using the lease-weight edge between them.

CS 355 (USNA)

Unit 6

Spring 2012 29 / 48



All-Pairs Shortest Pa			
Let's look at a new probl	em:		
Problem: All-Pairs Shor	test Paths		
Input: A graph $G = (V,$	E), weighted, and possibly	directed.	
Output: Shortest path b	etween every pair of vertice	s in <i>V</i>	
Many applications in the	precomputation/query mod	lel:	
	11-3-6	Carles 2012	21 / 4
CS 355 (USNA)	Unit 6	Spring 2012	31 / 4
Repeated Dijkstra's			
First idea: Run Dijkstra'	s algortihm from every vert	ex.	
Cost:			
Sparse graphs:			
• Dense graphs:			
	Unit 6	Spring 2012	32 / 41

Storing Paths			
. Neïve eest to store all			
 Naïve cost to store all 	paths:		
 Memory wall 			
• Better way:			
CS 355 (USNA)	Unit 6	Spring 2012	33 / 48

a	6	c	5		e	
	а	b	с	d	е	
а						
Ь						
с						
d						
е						

Recursive Approach

Idea for a simple recursive algortihm:

- New parameter k: The highest-index vertex visited in any shortest path.
- Basic idea: Path either contains k, or it doesn't.

Three things needed:

- **(1) Base case**: k = -1. Shortest paths are just single edges.
- Recursive step: Use basic idea above.
 Compare shortest path containing k to shortest path without k.
- **③ Termination**: When k = n, we're done.

CS 355 (USNA)

Unit 6

Spring 2012 35 / 48

Recursive Shortest Paths

rshort(A, i, j, k) **Input**: Adjacency matrix A and indices i, j, k**Output**: Shortest path from i to j that only goes through vertices 0-k

```
1 if k = -1 then
2 return A[i,j]
3 else
4 option1 := rshort(A,i,j,k-1)
5 option2 := rshort(A,i,k,k-1) + rshort(A,k,j,k-1)
6 return min(option1, option2)
7 end if
```

Analysis:

Dynamic Programming Solution

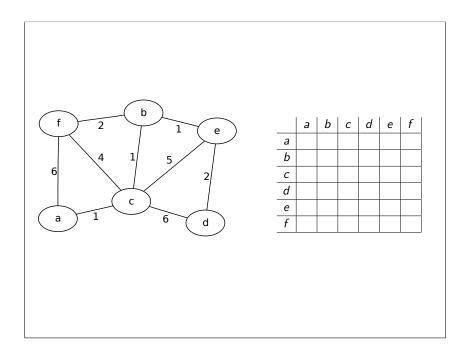
 $\boldsymbol{\mathsf{Key}}\ \boldsymbol{\mathsf{idea}}:\ \boldsymbol{\mathsf{Keep}}\ \boldsymbol{\mathsf{overwriting}}\ \boldsymbol{\mathsf{shortest}}\ \boldsymbol{\mathsf{paths}},\ \boldsymbol{\mathsf{using}}\ \boldsymbol{\mathsf{the}}\ \boldsymbol{\mathsf{same}}\ \boldsymbol{\mathsf{memory}}$

```
FloydWarshall(A)
Input: Adjacency matrix A
Output: Shortest path lengths between every pair of vertices
  1 L = copy(A)
    for k from 0 to n\ do
  2
       for i from 0 to n-1 do
  3
         for j from 0 to n-1 do
  4
           L[i,j] := min (L[i,j], L[i,k] + L[k,j])
  5
         end for
  6
       end for
  7
  8 end for
    return L
  9
```

Unit 6

CS 355 (USNA)

Spring 2012 37 / 48



Analysis of Floyd-Warshall

- Time:
- Space:
- Advantages:

Another Dynamic Solution

What if k is the greatest number of edges in each shortest path?

Let L_k be the matrix of shortest-path lengths with at most k edges.

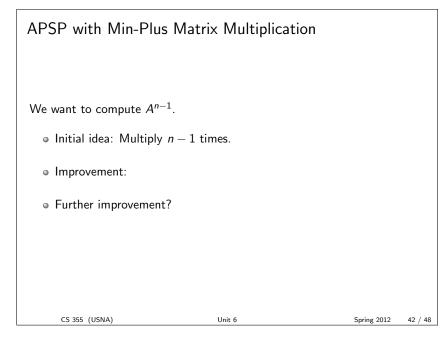
- **Base case**: k = 1, then $L_1 = A$, the adjacency matrix itself!
- **Recursive step**: Shortest (*k* + 1)-edge path is the minimum of *k*-edge paths, plus a single extra edge.
- **Termination**: Every path has length at most n 1. So L_{n-1} is the final answer.

CS 355 (USNA)

Unit 6

Spring 2012 40 / 48

Min-Plus Arithmetic Update step: $L_{k+1}[i, j] = \min_{0 \le \ell < n} (L_k[i, \ell] + A[\ell, j])$ Min-Plus Algebra • The + operation becomes "min" • The · operation becomes "plus" Update step becomes: CS 355 (USNA) Unit 6 Spring 2012 41 / 48



Transitive Closure

Examples of reachability questions:

Is there any way out of a maze?

- Is there a flight plan from one airport another?
- Can you tell me *a* is greater than *b* without a direct comparison?

 $\label{eq:precomputation} Precomputation/query\ formulation:\ Same\ graph,\ many\ reachability\ questions.$

Transitive Closure Problem **Input**: A graph G = (V, E), unweighted, possibly directed **Output**: Whether u is reachable from v, for every $u, v \in V$

CS 355 (USNA)

Unit 6

Spring 2012 43 / 48

TC with APSP

One vertex is reachable from another if the shortest path isn't infinite.

Therefore transitive closure can be solved with repeated Dijkstra's or Floyd-Warshall. Cost will be $\Theta(n^3)$.

Why might we be able to beat this?

CS 355 (USNA)

Unit 6

Spring 2012 44 / 48

Back to Algebra

Define T_k as the reachability matrix using at most k edges in a path.

What is T_0 ? What is T_1 ?

Formula to compute T_{k+1} :

Therefore transitive closure is just:

The most amazing co	onnection		
(Pay attention. Minds will	be blown in 32	1)	
CS 355 (USNA)	Unit 6	Spring 2012	46 / 48

