
Basic Terminology

REVIEW from Data Structures!

G = (V ,E ); V is set of n nodes, E is set of m edges

Node or Vertex: a point in a graph

Edge: connection between nodes

Weight: numerical cost or length of an edge

Direction: arrow on an edge

Path: sequence (u0, u1, . . . , uk) with every (ui−1, ui ) ∈ E

Cycle: path that starts and ends at the same node

CS 355 (USNA) Unit 6 Spring 2012 1 / 48

Examples

Roads and intersections

People and relationships

Computers in a network

Web pages and hyperlinks

Makefile dependencies

Scheduling tasks and constraints

(many more!)

CS 355 (USNA) Unit 6 Spring 2012 2 / 48

Example: Migration Flows

Source: http://www.pewsocialtrends.org/2008/12/17/u-s-migration-flows/

CS 355 (USNA) Unit 6 Spring 2012 3 / 48



Graph Representations

Adjacency Matrix: n × n matrix of weights.
A[i ][j ] has the weight of edge (ui , uj).
Weights of non-existent edges usually 0 or ∞.
Size:

Adjacency Lists: Array of n lists;
each list has node-weight pairs for the *outgoing edges* of that node.
Size:

Implicit: Adjacency lists computed on-demand.
Can be used for infinite graphs!

Unweighted graphs have all weights either 0 or 1.
Undirected graphs have every edge in both directions.

CS 355 (USNA) Unit 6 Spring 2012 4 / 48

Simple Example

Adjacency Matrix:

a b c d e

a

b

c

d

e

Adjacency List:

CS 355 (USNA) Unit 6 Spring 2012 5 / 48

Search Template

search(G)

1 colors := size -n a r r ay of "white"s

2 fringe := new collection

3 // initialize fringe with node-weight pairs
4 wh i l e fringe not empty do
5 (u,w1) := fringe.top()

6 i f colors[u] = "white" then
7 colors[u] := "gray"

8 f o r each outgoing edge (u,v,w2) of u do
9 fringe.update(v,w1+w2)

10 end f o r
11 e l s e i f colors[u] = "gray" then
12 colors[u] := "black"

13 fringe.remove(u,w1)

14 end i f
15 end wh i l e

CS 355 (USNA) Unit 6 Spring 2012 6 / 48



Basic Searches

To find a path from u to v ,
initialize fringe with (u, 0),
and exit when we color v to “gray”.

Two choices:

Depth-First Search
fringe is a stack. Updates are pushes.

Breadth-First Search
fringe is a queue. Updates are enqueues.

CS 355 (USNA) Unit 6 Spring 2012 7 / 48

DAGs

Some graphs are acyclic by nature.

An acyclic undirected graph is a. . .

DAGs (Directed Acyclic Graphs) are more interesting:

Can have more than n − 1 edges

Always at least one “source” and at least one “sink”

Examples:

CS 355 (USNA) Unit 6 Spring 2012 8 / 48

Linearization

Problem

Input: A DAG G = (V ,E )

Output: Ordering of the n vertices in V as
(u1, u2, . . . , un) such that only “forward edges” exist,
i.e., for all (ui , uj) ∈ E ), i < j .

(Also called “topological sort”.)

Applications:

CS 355 (USNA) Unit 6 Spring 2012 9 / 48



linearize(G)

1 order := empty list

2 colors := size -n a r r ay of "white"s

3 fringe := new stack

4 add every node i n V to fringe

5 wh i l e fringe not empty do
6 (u,w1) := fringe.top()

7 i f colors[u] = "white" then
8 colors[u] := "gray"

9 f o r each outgoing edge (u,v,w2) of u do
10 fringe.push(v,w2)

11 end f o r
12 e l s e i f colors[u] = "gray" then
13 colors[u] := "black"

14 order := u, order

15 fringe.remove(u,w1)

16 end i f
17 end wh i l e

CS 355 (USNA) Unit 6 Spring 2012 10 / 48

Linearization Example

CS 355 (USNA) Unit 6 Spring 2012 11 / 48

CS 355 (USNA) Unit 6 Spring 2012 12 / 48



Properties of DFS

Every vertex in the stack is a child of the first gray vertex below it.

Every descendant of u is a child of u or a descendant of a child of u.

In a DAG, when a node is colored gray its children are all white or
black.

In a DAG, every descendant of a black node is black.

CS 355 (USNA) Unit 6 Spring 2012 13 / 48

Dijkstra’s Algorithm

Dijkstra’s is a modification of BFS to find shortest paths.

Solves the single source shortest paths problem.

Used millions of times every day (!) for packet routing

Main idea: Use a minimum priority queue for the fringe

Requires all edge weights to be non-negative

CS 355 (USNA) Unit 6 Spring 2012 14 / 48

dijkstra(G,u)

1 colors := size -n a r r ay of "white"s

2 fringe := new minimum priority queue

3 f o r each v i n V do
4 add (v, infinity) to fringe

5 fringe.update(u, 0)

6 wh i l e fringe not empty do
7 (u,w1) := fringe.removeMin ()

8 colors[u] := "black"

9 print (u,w1)

10 f o r each edge (u,v,w2) with colors[v]="white" do
11 fringe.update(v,w1+w2)

12 end f o r
13 end wh i l e



Differences from the search template

fringe is a priority queue

fringe is initialized with every node

Updates are done to existing fringe elements

No gray nodes! (No post-processing necessary.)

Useful variants:

Keep track of the actual paths as well as path lengths

Stop when a destination vertex is found

CS 355 (USNA) Unit 6 Spring 2012 16 / 48

Dijkstra example

a

b

6

c
6

d3

2

e

4

5
1

4

CS 355 (USNA) Unit 6 Spring 2012 17 / 48

Dijkstra Implementation Options

Heap Unsorted Array

Adj. Matrix

Adj. List mmmmmmmmm

CS 355 (USNA) Unit 6 Spring 2012 18 / 48



Optimization Problems

An optimization problem is one where there are many solutions,
and we have to find the “best” one.

Examples we have seen:

Optimal solution can often be made as a series of “moves”
(Moves can be parts of the answer, or general decisions)

CS 355 (USNA) Unit 6 Spring 2012 19 / 48

Greedy Design Paradigm

A greedy algorithm solves an optimization problem
by a sequence of “greedy moves”.

Greedy moves:

Are based on “local” information

Don’t require “looking ahead”

Should be fast to compute!

Might not lead to optimal solutions

Example: Counting change

CS 355 (USNA) Unit 6 Spring 2012 20 / 48

Appointment Scheduling

Problem

Given n requests for EI appointments, each with start and end time,
how to schedule the maximum number of appointments?

For example:

Name Start End

Billy 8:30 9:00
Susan 9:00 10:00

Brenda 8:00 8:20
Aaron 8:55 9:05
Paul 8:15 8:45
Brad 7:55 9:45
Pam 9:00 9:30

CS 355 (USNA) Unit 6 Spring 2012 21 / 48



Greedy Scheduling Options

How should the greedy choice be made?

1 First come, first served

2 Shortest time first

3 Earliest finish first

Which one will lead to optimal solutions?

CS 355 (USNA) Unit 6 Spring 2012 22 / 48

Proving Greedy Strategy is Optimal

Two things to prove:

1 Greedy choice is always part of an optimal solution

2 Rest of optimal solution can be found recursively

CS 355 (USNA) Unit 6 Spring 2012 23 / 48

Matchings

Pairing up people or resources is a common task.

We can model this task with graphs:

Maximum Matching Problem

Given an undirected, unweighted graph G = (V ,E ), find a subset of edges
M ⊆ E such that:

Every vertex touches at most one edge in M

The size of M is as large as possible

Greedy Algorithm: Repeatedly choose any edge that goes between two
unpaired vertices and add it to M.

CS 355 (USNA) Unit 6 Spring 2012 24 / 48



Greedy matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

CS 355 (USNA) Unit 6 Spring 2012 25 / 48

Maximum matching example

l

h

m

d

i

a

b

e

c

f

j
k

g

CS 355 (USNA) Unit 6 Spring 2012 26 / 48

How good is the greedy solution?

Theorem: The optimal solution is at most times the size of one
produced by the greedy algorithm.

Proof:

CS 355 (USNA) Unit 6 Spring 2012 27 / 48



Spanning Trees

A spanning tree in a graph is a connected subset of edges that touches
every vertex.

Dijkstra’s algorithm creates a kind of spanning tree.
This tree is created by greedily choosing the “closest” vertex at each step.

We are often interested in a minimal spanning tree instead.

CS 355 (USNA) Unit 6 Spring 2012 28 / 48

MST Algorithms

There are two greedy algorithms for finding MSTs:

Prim’s. Start with a single vertex, and grow the tree by choosing the
least-weight fringe edge.
Identical to Dijkstra’s with different weights in the “update” step.

Kruskal’s. Start with every vertex (a forest of trees)
and combine trees by using the lease-weight edge between them.

CS 355 (USNA) Unit 6 Spring 2012 29 / 48

MST Examples
Prim’s:

a

b

6

c
6

d3

2

e

4

5
1

4

Kruskal’s:

a

b

6

c
6

d3

2

e

4

5
1

4

CS 355 (USNA) Unit 6 Spring 2012 30 / 48



All-Pairs Shortest Paths

Let’s look at a new problem:

Problem: All-Pairs Shortest Paths

Input: A graph G = (V ,E ), weighted, and possibly directed.

Output: Shortest path between every pair of vertices in V

Many applications in the precomputation/query model:

CS 355 (USNA) Unit 6 Spring 2012 31 / 48

Repeated Dijkstra’s

First idea: Run Dijkstra’s algortihm from every vertex.

Cost:

Sparse graphs:

Dense graphs:

CS 355 (USNA) Unit 6 Spring 2012 32 / 48

Storing Paths

Näıve cost to store all paths:

Memory wall

Better way:

CS 355 (USNA) Unit 6 Spring 2012 33 / 48



a

b

6

c
6

d3

2

e

4

5
1

4

a b c d e

a

b

c

d

e

Recursive Approach

Idea for a simple recursive algortihm:

New parameter k : The highest-index vertex visited in any shortest
path.

Basic idea: Path either contains k , or it doesn’t.

Three things needed:

1 Base case: k = −1. Shortest paths are just single edges.

2 Recursive step: Use basic idea above.
Compare shortest path containing k to shortest path without k .

3 Termination: When k = n, we’re done.

CS 355 (USNA) Unit 6 Spring 2012 35 / 48

Recursive Shortest Paths

rshort(A,i,j,k)

Input: Adjacency matrix A and indices i , j , k
Output: Shortest path from i to j that only goes through vertices 0–k

1 i f k = -1 then
2 r e tu rn A[i,j]

3 e l s e
4 option1 := rshort(A,i,j,k-1)

5 option2 := rshort(A,i,k,k-1) + rshort(A,k,j,k-1)

6 r e tu rn min(option1 , option2)

7 end i f

Analysis:

CS 355 (USNA) Unit 6 Spring 2012 36 / 48



Dynamic Programming Solution

Key idea: Keep overwriting shortest paths, using the same memory

FloydWarshall(A)

Input: Adjacency matrix A
Output: Shortest path lengths between every pair of vertices

1 L = copy(A)

2 f o r k from 0 to n do
3 f o r i from 0 to n-1 do
4 f o r j from 0 to n-1 do
5 L[i,j] := min (L[i,j], L[i,k] + L[k,j])

6 end f o r
7 end f o r
8 end f o r
9 r e tu rn L

CS 355 (USNA) Unit 6 Spring 2012 37 / 48

a

c

1

f

6

d6

e

54

b

1

12

2

a b c d e f

a

b

c

d

e

f

Analysis of Floyd-Warshall

Time:

Space:

Advantages:

CS 355 (USNA) Unit 6 Spring 2012 39 / 48



Another Dynamic Solution

What if k is the greatest number of edges in each shortest path?

Let Lk be the matrix of shortest-path lengths with at most k edges.

Base case: k = 1, then L1 = A, the adjacency matrix itself!

Recursive step: Shortest (k + 1)-edge path is the minimum of
k-edge paths, plus a single extra edge.

Termination: Every path has length at most n − 1.
So Ln−1 is the final answer.

CS 355 (USNA) Unit 6 Spring 2012 40 / 48

Min-Plus Arithmetic

Update step: Lk+1[i , j ] = min
0≤`<n

(Lk [i , `] + A[`, j ])

Min-Plus Algebra

The + operation becomes “min”

The · operation becomes “plus”

Update step becomes:

CS 355 (USNA) Unit 6 Spring 2012 41 / 48

APSP with Min-Plus Matrix Multiplication

We want to compute An−1.

Initial idea: Multiply n − 1 times.

Improvement:

Further improvement?

CS 355 (USNA) Unit 6 Spring 2012 42 / 48



Transitive Closure

Examples of reachability questions:

Is there any way out of a maze?

Is there a flight plan from one airport another?

Can you tell me a is greater than b without a direct comparison?

Precomputation/query formulation: Same graph, many reachability
questions.

Transitive Closure Problem

Input: A graph G = (V ,E ), unweighted, possibly directed
Output: Whether u is reachable from v , for every u, v ∈ V

CS 355 (USNA) Unit 6 Spring 2012 43 / 48

TC with APSP

One vertex is reachable from another if the shortest path isn’t infinite.

Therefore transitive closure can be solved with repeated Dijkstra’s or
Floyd-Warshall. Cost will be Θ(n3).

Why might we be able to beat this?

CS 355 (USNA) Unit 6 Spring 2012 44 / 48

Back to Algebra

Define Tk as the reachability matrix using at most k edges in a path.

What is T0?
What is T1?

Formula to compute Tk+1:

Therefore transitive closure is just:

CS 355 (USNA) Unit 6 Spring 2012 45 / 48



The most amazing connection

(Pay attention. Minds will be blown in 3. . . 2. . . 1. . . )

CS 355 (USNA) Unit 6 Spring 2012 46 / 48

Vertex Cover
Problem: Find the smallest set of vertices that touches every edge.

l

h

m

d

i

a

b

e

c

f

j
k

g

CS 355 (USNA) Unit 6 Spring 2012 47 / 48

Approximating VC

Approximation algorithm for minimal vertex cover:

1 Find a greedy maximal matching

2 Take both vertices in every edge in the matching

Why is this always a vertex cover?

How good is the approximation?

CS 355 (USNA) Unit 6 Spring 2012 48 / 48


