Number Theory			
2 Analysis: We'll learn3 Cryptography! Moder	dy of integers and their algortihms were numbe about new kinds of runr rn cryptosystems rely he s dealing with integers a	er-theoretic. ning times and analys eavily on this stuff.	ses.
CS 355 (USNA)	Unit 3	Spring 2012	1 / 30

How big is an integer?The measure of difficulty for array-based problems was always the size of the array.What should it be for an algorithm that takes an ineger *n*?

CS 355 (USNA)

Unit 3

Spring 2012 2 / 30

Factorization

Classic number theory question: What is the **prime factorization** of an integer n?

Recall:

- A prime number is divisible only by 1 and itself.
- ${\ensuremath{\, \circ }}$ Every integer >1 is either prime or composite.
- Every integer has a unique prime factorization.

It suffices to compute a *single* prime factor of *n*.

leastPrimeFactor		
Input: Positive integer n		
Output: The smallest prim	ne p that divides n, or "I	PRIME"
2 while i*i <= 1	n do	
<pre>3 if i divides 4 i := i + 1</pre>	s n then return :	i
5 return "PRIME	"	
CS 355 (USNA)	Unit 3	Spring 2012 4 / 30
Polynomial Time		
The actual running time, i	in terms of the size $s\in {\mathfrak S}$	$\Theta(\log n)$ of n , is $\Theta(2^{s/2})$.
Definition		1
An algorithm runs in poly some constant <i>c</i> .	nomial time if its worst	c-case cost is $O(n^c)$ for
some constant c.		
Why do we care? The foll	owing is sort of an algor	ithmic "Moore's Law":
Cobham-Edmonds Thesi	S	
An algorithm for a compute computer only if it is poly	-	feasibly solved on a
	nonnar time.	
So our integer factorizatio	on algorithm is actually re	eally slow!
CS 355 (USNA)	Unit 3	Spring 2012 5 / 30
Modular Arithmetic		
		1
Division with Remainder		
Division with Remainder For any integers <i>a</i> and <i>m</i> $= 0 \le r < m$ such that	with $m > 0$, there exist i	integers q and r with

Addition mod 15 + | 0 | 1 |5 | 6 | 7 | 8 | $10 \mid 11 \mid 12 \mid 13 \mid 14$ $\mathbf{5}$ $\mathbf{2}$ CS 355 (USNA) Unit 3 Spring 2012 7 / 30

Modular Addition

This theorem is the key for efficient computation:

Theorem

For any integers a, b, m with m > 0, $(a + b) \mod m = (a \mod m) + (b \mod m) \mod m$

Subtraction can be defined in terms of addition:

- a-b is just a+(-b)
- -b is the number that adds to b to give 0 mod m

• For $0 < b < m, -b \mod m = m - b$

CS 355 (USNA)

Unit 3

Spring 2012 8 / 30

Mul	tipl	icat	ion	mo	d 15	5									
×	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1
	CS 3	355 (US	SNA)				Ur	nit 3					Sprin	g 2012	9 / 30

Modular Multiplication

There's a similar (and similarly useful!) theorem to addition:

Theorem

For any integers a, b, m with m > 0, (ab) mod $m = (a \mod m)(b \mod m) \mod m$

What about modular division?

- We can view division as multiplication: $a/b = a \cdot b^{-1}$.
- b^{-1} is the number that multiplies with b to give 1 mod m
- Does the reciprocal (multiplicative inverse) always exist?

CS 355 (USNA)

Unit 3

Spring 2012 10 / 30

Modular Inverses

Look back at the table for multiplication mod 15. A number has an inverse if there is a 1 in its row or column.

CS 355 (USNA)

Unit 3

Spring 2012 11 / 30

$\frac{0}{1}$	0		2	3	4	5	6	7	8	9	10	11	12	
	~	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	1	2	3	4	5	6	7	8	9	10	11	12	
2	0	2	4	6	8	10	12	1	3	5	7	9	11	
3	0	3	6	9	12	2	5	8	11	1	4	7	10	
4	0	4	8	12	3	7	11	2	6	10	1	5	9	
5	0	5	10	2	7	12	4	9	1	6	11	3	8	
6	0	6	12	5	11	4	10	3	9	2	8	1	7	
7	0	7	1	8	2	9	3	10	4	11	5	12	6	
8	0	8	3	11	6	1	9	4	12	7	2	10	5	
9	0	9	5	1	10	6	2	11	7	3	12	8	4	
10	0	10	7	4	1	11	8	5	2	12	9	6	3	
11	0	11	9	7	5	3	1	12	10	8	6	4	2	
12	0	12	11	10	9	8	7	6	5	4	3	2	1	
ee all	the	inve	rses?											

Totient function

This function has a first name; it's Euler.

Definition

The **Euler totient function**, written $\varphi(n)$, is the number of integers less than *n* that don't have any common factors with *n*.

Of course, this is also the number of invertible integers mod n.

When n is prime, $\varphi(n) = n - 1$. What about $\varphi(15)$?

CS 355 (USNA)

Unit 3

Spring 2012 13 / 30

Modular Exponentiation

This is the most important operation for cryptography!

Example: Compute 3²⁰¹³ mod 5.

CS 355 (USNA)

Unit 3

Spring 2012 14 / 30

Computing GCD's

The **greatest common divisor** (GCD) of two integers is the largest number which divides them both evenly.

Euclid's algorithm (c. 300 B.C.!) finds it:

GCD (Euclidean algorithm)

```
Input: Integers a and b
Output: g, the gcd of a and b
```

- 1 if b = 0 then return a
 2 else return GCD(b, a mod b)
- 2 erse return GOD(b, a mou b

Correctness relies on two facts:

```
• gcd(a, 0) = a
```

```
• gcd(a, b) = gcd(b, a \mod b)
```

Unit 3

Analysis of Euclidean	Algorithm		
CS 355 (USNA)	Unit 3	Spring 2012	16 / 30

Worst-case of Euclidean Algorithm

Definition

The Fibonacci numbers are defined recursively by:

• $f_0 = 0$ • $f_1 = 1$ • $f_n = f_{n-2} + f_{n-1}$ for $n \ge 2$

CS 355 (USNA)

Unit 3

The worst-case of Euclid's algorithm is computing $gcd(f_n, f_{n-1})$.

Spring 2012 17 / 30

Extended Euclidean Algorithm

Computing gcd(a, m) tells us whether $a^{-1} \mod m$ exists. This algorithm computes it:

```
Extended Euclidean Algorithm
Input: Integers a and b
Output: Integers g, s, and t such that g = GCD(a,b) and as + bt = g.
1 if b = 0 then return (a, 1, 0)
2 else
3 (q, r) := DivisionWithRemainder(a,b)
4 (g, s0, t0) := XGCD(b, r)
5 return (g, t0, s0 - t0*q)
6 end if
```

Notice: $bt = g \mod a$. So if the gcd is 1, this finds the multiplicative inverse!

Cryptography

Basic setup:

- (1) Alice has a message M that she wants to send to Bob.
- ② She encrypts *M* into another message *E* which is gibberish to anyone except Bob, and sends *E* to Bob.
- 3 Bob **decrypts** E to get back the original message M from Alice.

Generally, M and E are just big numbers of a *fixed size*.

So the full message must be encoded into bits, then split into *blocks* which are encrypted separately.

А	В	С	D	Е	F	G	Η	Ι	J	Κ	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
N 13	0 14	Р 15	Q 16	R 17		T 19	U 20	V 21	W 22	X 23	Y 24	Z 25

Public Key Encryption

Traditionally, cryptography required Alice and Bob to have a **pre-shared key**, secret to only them.

Along came the internet, and suddenly we want to communicate with people/businesses/sites we haven't met before.

The solution is **public-key cryptography**:

- $\textcircled{\sc 0}$ Bob has two keys: a public key and a private key
- ② The public key is used for encryption and is published publicly
- 3 The private key is used for decryption and is a secret only Bob knows.

3 Compute $d = e^{-1} \mod n$ with the Extended GCD algorithm

Unit 3

RSA Analysis We want to know how much the following cost: • Generating a public/private key pair • Encrypting or decrypting with the proper keys • Decrypting *without* the private key What would it take for this to be a secure cryptosystem? CS 355 (USNA) Unit 3 Spring 2012 25 / 30 Primality Testing

RSA key generation requires computing random primes.

- **Good news**: Primes are everywhere! In particular, about 1 in every k integers with k bits is prime.
- **Bad news**: Testing for primality seems difficult. We *need* to be able to do this faster than factorization!

CS 355 (USNA)

Unit 3

Spring 2012 26 / 30

```
Miller-Rabin Test
Input: Positive integer n
Output: "PRIME" if n is prime, otherwise "COMPOSITE" (probably)
  1 a := random integer in [2..n-2]
  2 d := n-1
  3 k := 0
    while d is even do
  4
       d := d / 2
  5
       k := k + 1
  6
    end while
  7
  8 x := a^d \mod n
     if x^2 mod n = 1 then return "PRIME"
  9
 10
    for r from 1 to k-1 do
       x := x^2 \mod n
 11
       if x = 1 then return "COMPOSITE"
 12
       if x = n-1 then return "PRIME"
 13
 14 end for
    return "COMPOSITE"
 15
    CS 355 (USNA)
                           Unit 3
                                                Spring 2012
                                                        27 / 30
```

Cost analysis for k-bit encryption

The main capabilities we need are:

- Generating random primes
- Computing XGCDs
- Modular exponentiation

The cost of **key generation** is $O(k^4)$

The cost of **encryption** and **decryption** are $O(k^3)$.

CS 355 (USNA)

Unit 3

Spring 2012 28 / 30

Security of RSA

We need to assert, without proof, that:

- **(1)** The only way to decrypt a message is to have the private key (d, n).
- 2 The only way to get the private key is to first compute $\varphi(n)$.
- 3 The only way to compute $\varphi(n)$ is to factor n.
- There is no algorithm for factoring a number that is the product of two large primes in polynomial-time.

If all this is true, then as the key length k grows, the cost of factoring will always outpace the cost of encrypting/decrypting with the proper keys.

CS 355 (USNA)

Unit 3

Spring 2012 29 / 30

Summary

We acquired the following number-theoretic tools:

- Modular arithmetic (addition, multiplication, division, powering)
- GCDs and XGCDs with the Euclidean algorithm
- Primality testing (fast) and factorization (slow)

All these pieces are used in implementing and analyzing RSA.