
SI 413, Unit 1: Introduction

Daniel S. Roche (roche@usna.edu)

Fall 2018

1 About this course
The main goal of this course is to help you become that “master programmer”. Simple enough, right? This is
a hands-on course, so you will get to apply many of the ideas that we talk about in lecture. Over the next
few months, you will:

• Learn to program in a functional language (Scheme)
• Write a complete interpreter from the ground up for a simple language
• Write a compiler for a virtual machine
• Learn a different programming language on your own
• Discover the wide variety of features offered by different programming language, and understand how

languages are specified and described.

At Carnegie Mellon and most other respectable computer science departments, all this is split into about
three different courses in the undergraduate curriculum. We will give a whirlwind overview in one semester.
So hold on to your hats! And get ready to bring your programming skills to a new level.

The graded components of this class are Homeworks, Labs, Exams, and the semester-long Project. You will
find that labs and lectures build on each other, but aren’t always overlapping. The time you will spend
working on the labs is one of the most crucial components of the course. The Course Policy has many more
details on all this and is worth your time to read over.

2 Programming Languages
Readings for this section: PLP, Sections 1.2 pp. 10-14 and the rest of chapter 1 pp. 3-36.

Programming languages are the medium by which we communicate our ideas and algorithms to computers.
Just like human language, there are two competing concerns: how easy it is for us to write down our ideas (the
expressivity of the language), and how easy it is for someone else (in this case, the computer) to understand
them.

Higher-level languages are designed more with the programmer in mind, meant to make it easy to code up
complicated programs. They are therefore more expressive but might be more difficult to compile. Lower-level
languages, by contrast, are more focused on how the computer actually works. These languages trade
expressivity for speed and simplicity.

There are a few major categories of programming languages, or paradigms. Different people disagree on the
details here, but here’s what I would call the major programming language paradigms:

• Imperative: Straightforward languages where you write statements that roughly correspond to actual
machine instructions. There might be some loops and functions, but generally not very many fancy
features.

• Functional: Rather than a series of statements that are executed in order, programs are written as
a combination of many small function calls. Recursion is usually preferred over loops. This style of
programming actually predates computers!

1

mailto:roche@usna.edu
../../admin/policy.php


• Object Oriented: Programs are designed around objects, which have both state (data) and behavior
(methods). This is really a programming style that could be applied in many languages, but a few
languages explicitly support and/or encourage this style of programming.

• Scripting: These languages are designed to let you solve small tasks and problems quickly. Often
they are interpreted rather than compiled, and feature extensive library support and growing language
features. The focus is on ease of use rather than speed.

• Logic: Not nearly as popular as the other types, logic languages equate the running of a program to
the proving of a theorem. Sounds crazy (and is), but these languages can allow a very simple expression
of very sophisticated programs.

• Esoteric: This class of languages is not really meant to be useful except as a diversion or proof of
concept. You wouldn’t want to write an operating system in one of these languages, but they might be
interesting for theoretical study, fun to learn, or revealing about the nature of computation.

You have probably already seen an imperative language (C), an object-oriented language (Java), and a
scripting language (bash or Perl) in your coursework here. However, you probably haven’t seen any language
from one of the most popular paradigms, functional programming languages. We will spend the beginning of
this course learning Scheme, a simple yet powerful functional language. Some of you will also learn a logic
programming language or an esoteric language in your course project.

One really important thing to remember is that programming languages can’t necessarily be compared simply
in terms of “better” and “worse”. The best language to use depends on the task. Just like a master craftsman
knows exactly which tool to use for any job, so the master programmer has a wide range of languages and
knows how to choose an appropriate one for any problem.

3 Overview of compilation
Readings for this section: PLP, Sections 1.6 pp. 25-35 and 1.4 pp.16-23

Compilation is the act of turning source code (in any programming language) into executable assembly code.
More generally, it could be described as a type of code translation, translating from some programming
language (such as C++) into another (yes, assembly is a programming language).

At a high level, compilation follows the following stages:

1. Scanning (also called lexical analysis): Turning the original source code into a stream of chunks called
tokens using simple regular expression matching. This is like separating a text document into a list of
words and punctuation marks.

Comments and whitespace (except in langauges where whitespace is meaningful!) are removed at this
stage.

2. Parsing: Using context-free-grammars to organize a stream of tokens into a parse tree. This, along
with the scanning phase, constitute the syntax analysis of compilation, based only on simple rules of
how the source code looks, and not on any of the meaning behind what the program is doing.

3. Semantic Analysis: Now we’re getting somewhere! This stage of compilation turns a parse tree into
an abstract syntax tree, or AST for short.

And what is an AST, you ask? Again, we’ll cover this in much more detail later, but the important
thing to remember is that it has nothing to do with the syntax of the language! The AST represents
the meaning of the program in some useful way, regardless of the minor details about how the code was
formatted or even what language it was written in! More on this later. In fact, it’s possible (in principle
at least) for programs in two completely different languages to generate the same AST, if they have the
same meaning. We’ll even see examples of something like this in languages such as Clojure that are
totally different from Java but compile to the same bytecode and run on the same virtual machine.

4. Optimization: This stage is technically optional for a compiler to work, but you wouldn’t be very
happy if it didn’t happen. At this stage, the compiler makes changes to the AST (essentially, changing

2

https://esolangs.org/wiki/Whitespace


the program that you wrote!) in order to make it run faster on the target architecture.

This stage is very important in practice, and for long-established languages such as C and Fortran
there is still a great deal of work that goes into improving and updating the optimization routines in
compilers for each new kind of processor that comes out. This is how the same old code take advantage
of newer and newer hardware features, which is great if you’re a programmer who doesn’t like to rewrite
their code every year!

(Unfortunately, this is also the stage of compilation that we’ll have almost no time to spend on this
semester.)

5. Code Generation: This is the last stage of compilation, which turns an (optimized) AST into the
output language, usually assembly or machine code. It can be fairly tricky becaues usually the low-level
language you are compiling to has far fewer features than the high-level language you started with!

Note that this last stage is the only one that really needs to be re-done if you want your compiler to
work for a new kind of machine, or to translate into a different programming language.

Because we have almost no time in this class to discuss all the optimizations that compilers perform, we’ll
sometimes leave out step 4 in thinking about the process. The Dragon book is a great resource if you want to
learn more about this on your own.

4 Interpreted languages
Nowadays, many languages are not fully compiled but rather interpreted directly. Think about C++ vs
Javascript. With C++, you start by writing your source code and then compiling into an executable file,
maybe called a.out. Importantly, this executable can be run on any machine with the same microarchitecture,
even if that machine doesn’t have any compiler ! Typically when you install or purchase software, you’re just
getting this executable code; the original source code has already been compiled for you.

Javascript works differently. When you load a webpage with Javascript, the actual code is sent to your browser
which then executes it on the web site’s behalf. Your browser in this case is acting as an interpreter for the
Javascript language. The advantage here is that, rather than compile executables for every possible kind of
computer that someone might use when visiting their site, a website author just needs to write Javascript
source code once and send that directly, leaving it up to the browser to execute. Of course, there is a price to
be paid for this flexibility however, mostly in terms of execution speed.

In an interpreted language, the last stage of compilation is skipped; the interpreter executes the (optimized)
AST directly. In fact, the first language which we will learn in this class, Scheme, is an interpreted language,
and the interpreter we are using is DrRacket.

3

https://www.pearson.com/us/higher-education/program/Aho-Compilers-Principles-Techniques-and-Tools-2nd-Edition/PGM167067.html

	About this course
	Programming Languages
	Overview of compilation
	Interpreted languages

