
Overview

Naming Issues: Example 1

We need to know what thing a name refers to in our programs.

Consider, in Perl:

$x=1;

sub foo() { $x = 5; }

sub bar() { local $x = 2; foo(); print $x ,”\n ”; }

bar ();

What gets printed for x?

SI 413 (USNA) Unit 6 Fall 2021 1 / 27

Overview

Naming Issues: Example 2

We need to know what thing a name refers to in our programs.

Consider, in Scheme:

(define x 1)

(define (foo x)

(lambda () (display x)))

((foo 5))

(display x)

What gets printed for x?

SI 413 (USNA) Unit 6 Fall 2021 2 / 27

Overview

Naming Issues: Example 3

We need to know what thing a name refers to in our programs.

Consider, in C++:

char* foo() {

char s[20];

cin >> s;

return s;

}

int bar (char* x) { cout << x << endl; }

int main() { bar(foo ()); }

What gets printed for x?

SI 413 (USNA) Unit 6 Fall 2021 3 / 27

Overview

Basic terminology

Name: A reference to something in our program

Binding: An attachment of a value to a name

Scope: The part of code where a binding is active

Referencing Environment: The set of active bindings at the point
of an expression

Allocation: Setting aside space for an object

Lifetime: The time when an object is in memory

SI 413 (USNA) Unit 6 Fall 2021 4 / 27

Overview

Options

Scoping Allocation

Single Global Scope
Just one symbol table

Dynamic Scope
Stacks of scopes, depends
on run-time behavior

Lexical Scope
Scope is based on the
syntactical (lexical)
structure of the code.

Static Allocation
Allocation fixed at
compile-time

Stack Allocation
Follows function calls

Heap Allocation
Done at run-time, as objects
are created and destroyed

SI 413 (USNA) Unit 6 Fall 2021 5 / 27

Allocation

Static Allocation

The storage for some objects can be fixed at compile-time.
Then our program can access them really quickly!

Examples:

Global variables

Literals (e.g. "a string")

Everything in Fortran 77?

SI 413 (USNA) Unit 6 Fall 2021 6 / 27

Allocation

Stack Allocation

The run-time stack is usually used for function calls.
Includes local variables, arguments, and returned values.

Example: What does the stack look like for this C program?

int g(int x) { return x*x; }

int f(int y) {

int x = 3 + g(y);

return x;

}

int main() {

int n = 5;

f(n);

}

SI 413 (USNA) Unit 6 Fall 2021 7 / 27

Allocation

Heap Allocation

The heap refers to a pile of memory that can be taken as needed. It is
typically used for run-time memory allocation.

This is the slowest kind of allocation because it happens at run-time.

Compilers/interpreters providing garbage collection make life easier with
lots of heap-allocated storage.
Otherwise the segfault monsters will come. . .

SI 413 (USNA) Unit 6 Fall 2021 8 / 27

Scoping Intro

Single Global Scope

Why not just have every instance of a name bind to the same object?
(Compiler writing would be easier!)

SI 413 (USNA) Unit 6 Fall 2021 9 / 27

Scoping Intro

What is a scope?
Certain language structures create a new scope. For example:

int temp = 5;

// Sorts a two-element array.

void twosort(int A[]) {

if (A[0] > A[1]) {

int temp = A[0];

A[0] = A[1];

A[1] = temp;

}

}

int main() {

int arr[] = {2, 1};

twosort(arr);

cout << temp; // Prints 5, even with dynamic scoping!

}

SI 413 (USNA) Unit 6 Fall 2021 10 / 27

Scoping Intro

Nested Scopes

In C++, nested scopes are made using curly braces ({ and }).
The scope resolution operator :: allows jumping between scopes manually.

In most languages, function bodies are a nested scope.
Often, control structure blocks are also (e.g. for, if, etc.)

Lexical scoping follows the nesting of scopes in the actual source code (as
it is parsed).
Dynamic scoping follows the nesting of scopes as the program is executed.

SI 413 (USNA) Unit 6 Fall 2021 11 / 27

Scoping Intro

Declaration Order

In many languages, variables must be declared before they are used.
(Otherwise, the first use constitutes a declaration.)

In C/C++, the scope of a name starts at its declaration and goes to the
end of the scope. Every name must be declared before its first use,
because names are resolved as they are encountered.

C++ and Java make an exception for names in class scope.
Scheme doesn’t resolve names until they are evaulated.

SI 413 (USNA) Unit 6 Fall 2021 12 / 27

Scoping Intro

Declaration Order and Mutual Recursion

Consider the following familar code:

void exp() { atom (); exptail (); }

void atom() {

switch(peek ()) {

case LP: match(LP); exp (); match(RP); break;

// ...

}

}

Mutual recursion in C/C++ requires forward declarations,
i.e., function prototypes.

These wouldn’t be needed within a class definition or in Scheme.
C# and Pascal solve the problem in a different way. . .

SI 413 (USNA) Unit 6 Fall 2021 13 / 27

Dynamic Scope

Dynamic vs. Lexical Scope

Dynamic Scope

Bindings determined by most recent declaration (at run time)

The same name can refer to many different bindings!

Examples:

Lexical Scope

Bindings determined from lexical structure at compile-time

The same name always refers to the same binding.

More common in “mature” languages

Examples:

SI 413 (USNA) Unit 6 Fall 2021 14 / 27

Dynamic Scope

Dynamic vs. Lexical Example

int x = 10;

int foo(int y) {

x = y+5;

print(x);

}

int main() {

int x = 8;

foo (9);

print(x);

}

How does the behavior differ between a dynamic or lexically scoped
language?

SI 413 (USNA) Unit 6 Fall 2021 15 / 27

Dynamic Scope

Implementing Dynamic Scope

A Central Reference Table is used to implement dynamic scope.

This global object contains:

A mapping of names to stacks of values.
Declaring a new binding pushes onto the stack; exiting that binding’s
scope pops off the top of the stack.

A stack of sets of names. Each set stores the names declared in some
scope (so we know what bindings to pop!).

SI 413 (USNA) Unit 6 Fall 2021 16 / 27

Dynamic Scope

Example: Central Reference Tables with Lambdas

{

new x := 0;

new i := -1;

new g := lambda z { ret := i; };

new f := lambda p {

new i := x;

if (i > 0) { ret := p@0; }

else {

x := x + 1;

i := 3;

ret := f@g;

}

};

write f@(lambda y {ret := 0});

}

What gets printed by this (dynamically-scoped) SPL program?

SI 413 (USNA) Unit 6 Fall 2021 17 / 27

Lexical Scope

Lexical Scope Tree

Name resolution in lexical scoping follows the scope tree:

Every (nested) scope is a node in the tree.

The root node is the global scope

Nodes contain names defined in that scope.

To determine active bindings, follow the tree up from the current
scope until you see the name!

Example (program on previous slide):

SI 413 (USNA) Unit 6 Fall 2021 18 / 27

Lexical Scope

Reminder: The class of functions

Recall that functions in a programming language can be:

Third class: Never treated like variables

Second class: Passed as parameters to other functions

First class: Also returned from a function and assigned to a variable.

SI 413 (USNA) Unit 6 Fall 2021 19 / 27

Lexical Scope

Implementing Lexical Scope

With lexical scoping , rules for binding get more complicated when
functions have more flexibility.

Third-class functions:
Can use “static links” into the function call stack

Second-class functions:
Can use “dynamic links” into the function call stack

First-class functions:
Must use Frames

SI 413 (USNA) Unit 6 Fall 2021 20 / 27

Lexical Scope

Lexical Scope with 1st-Class Functions

What happens here?

{

new f := lambda x {

new g := lambda y { ret := x * y; };

ret := g;

};

new h := f@2;

write h@3;

}

Where are the non-local references stored?

SI 413 (USNA) Unit 6 Fall 2021 21 / 27

Lexical Scope

Frames

A frame is a data structure that represents the referencing environment of
some part of a program.
It contains:

A link to the parent frame.
This will correspond to the enclosing scope, (or null for the global
environment frame).

A symbol table mapping names to values.
(Notice: no stacks!)

Looking up a name means checking the current frame, and if the name is
not there, recursively looking it up in the parent frame.

Function calls create new frames.

SI 413 (USNA) Unit 6 Fall 2021 22 / 27

Lexical Scope

SPL Example for Frames

How would this program work using lexical scoping?

new x := 8;

new f := lambda n {

write n + x;

};

{ new x := 10;

write f@2;

}

How do frames compare with activation records on the stack?

Can we use frames for dynamic scoping?

SI 413 (USNA) Unit 6 Fall 2021 23 / 27

Lexical Scope

Closures

How are functions represented as values (i.e., first-class)?
With a closure!

Recall that a closure is a function definition plus its referencing
environment. In the frame model, we represent this as a pair of:

The function definition (parameters and body)

A link to the frame where the function was defined

SI 413 (USNA) Unit 6 Fall 2021 24 / 27

Lexical Scope

Example with closures

Draw out the frames and closures in a Scheme program using our stacks:

(define (make-stack)

(define stack ’())

(lambda (arg)

(if (eq? arg ’pop)

(let ((popped (car stack)))

(set! stack (cdr stack))

popped)

(set! stack (cons arg stack)))))

(define s (make-stack))

(s 5)

(s 20)

(s ’pop)

SI 413 (USNA) Unit 6 Fall 2021 25 / 27

Lexical Scope

Class outcomes

You should know:

The meaning of terms like binding and scope

The trade-offs involved in storage allocation

The trade-offs involved in scoping rules

The motivation behind declare-before-use rules, and their effect on
mutual recursion.

Why some languages restrict functions to 3rd-class or 2nd-class

What non-local references are, and what kind of headaches they
create

How memory for local variables is allocated when in lexical scoping
with first-class functions

Why first class functions require different allocation rules

What is meant by closure, referencing environment, and frame.

SI 413 (USNA) Unit 6 Fall 2021 26 / 27

Lexical Scope

Class outcomes

You should be able to:

Show how variables are allocated in C++, Java, and Scheme.

Draw out activation records on a run-time stack.

Determine the run-time bindings in a program using dynamic and
lexical scoping.

Draw the state of the Central Reference Table at any point in running
a dynamically-scoped program

Draw the tree of nested scopes for a lexically-scoped program.

Trace the run of a lexically-scoped program.

Draw the frames and closures in a program run using lexical or
dynamic scoping

SI 413 (USNA) Unit 6 Fall 2021 27 / 27

