
Parse Trees

Beefed-up calculator language

run → stmt run | stmt
stmt → ares STOP

ares → VAR ASN bres | bres
bres → bres BOP res | res
res → res COMP exp | exp
exp → exp OPA term | term
term → term OPM factor | factor

factor → NUM | VAR | LP bres RP

Download today’s tarball and run make to get a parse tree for some string
in this language.

We notice that the parse tree is large and unwieldy with many unnecessary
nodes.

SI 413 (USNA) Unit 5 Fall 2021 1 / 6

Abstract Syntax Tree

Consider the program x := (5 + 3) * 2; x - 7;.
What should the AST for this look like?

:=

x *

+

5 3

2

print

-

x 7

null

SI 413 (USNA) Unit 5 Fall 2021 2 / 6

AST Properties

Remember, ASTs are not about the syntax!
They remove syntactic details from the program, leaving only the
semantics.

Typically, we show ordering (e.g. of ares’s in the previous example) by
nesting: the last child of a statement is the next statement, or null.

Are ASTs language independent?

SI 413 (USNA) Unit 5 Fall 2021 3 / 6

Static type checking

Consider the string (7 > 2) + 3;. This is an error.
But where should this error be identified?

Each node in the AST has a type, possibly ”void”.

SI 413 (USNA) Unit 5 Fall 2021 4 / 6

Static type checking with variables

What about the string x = 6 > 3; x * 12;?

We have to know the type of the variable x .
Otherwise, there is no way to detect this error at compile-time.

Only statically-typed languages allow this sort of checking.
Remember, in this class errors are a good thing!

SI 413 (USNA) Unit 5 Fall 2021 5 / 6

Unit outcomes

You should know:

What an AST is, and why we need them.

The relationship between language, parse tree, and AST.

How static type-checking works, at a basic level.

You should be able to:

Draw a parse tree for a given string, given the grammar.

Determine the AST from the parse tree. Note that there is some
flexibility here!

SI 413 (USNA) Unit 5 Fall 2021 6 / 6

