
Pure Functional Programming

Pure Functional Programming

Two characteristics of functional programming:

Referential Transparency

Functions are first class
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Pure Functional Programming

Procedures are First-Class

What does it mean for procedures to have first-class status?

They can be given names.

They can be arguments to procedures.

They can be returned by procedures.

They can be stored in data structures (e.g. lists).
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Pure Functional Programming

Procedures returning procedures

Example: Get the predicate for the type of a sample input

(define (test-my-type something)

(cond [( number? something) number ?]

[( symbol? something) symbol ?]

[(list? something) list? ]))

Useful when combined with higher-order procedures:

(define (like-the-first L)

(filter (test-my-type (car L)) L))
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Pure Functional Programming

Storing procedures in a list

Maybe we want to apply different functions to the same data:

(define (apply-all alof alon)

(if (null? alof)

’()

(cons ((car alof) alon)

(apply-all (cdr alof) alon ))))

Then we can get statistics on a list of numbers:
(apply-all (list length mean stdev) (list 2.4 5 3.2 3 8))
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Lambda

Interruption: History Class

The lambda calculus is a way
of expressing computation

Developed by Alonzo Church
(left) in the 1930s

Believed to cover everything
that is computable
(Church-Turing thesis)

Everything is a function:
numbers, points, booleans, . . .

Functions are just a kind of
data!
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Lambda

Anonymous functions in Scheme

lambda is a special form in Scheme that creates a nameless (or
“anonymous”) function:

(lambda (arg1 arg2 ...)

expr-using-args)

It’s a special kind of function-that-returns-a-function.

(lambda (x) (+ x 5)) ⇒ #<procedure>

((lambda (x) (+ x 5)) 8) ⇒ 13
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Lambda

Behind the curtain

You have already been using lambda!

(define (f x1 x2 ... xn) exp-using-xs)

is the same as:

(let ((x1 e1) (x2 e2) ... (xn en)) exp-using-xs)

is the same as:
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Side Effects

Side Effects

Remember the intro to the Scheme standard:

Scheme is a statically scoped and properly tail-recursive dialect of the Lisp
programming language invented by Guy Lewis Steele Jr. and Gerald Jay
Sussman. It was designed to have an exceptionally clear and simple
semantics and few different ways to form expressions. A wide variety of
programming paradigms, including functional, imperative, and message
passing styles, find convenient expression in Scheme.

What do we have to give up to get side effects?
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Side Effects

Controlling Output

Displaying text to the screen is a kind of side effect.

Here are some useful functions for screen output:

(display X)

(newline)

(printf format args...)

The catch-all format flag is ~a.

(Note: Strings in Scheme are made using double quotes, like
”This is a string ”.)
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Side Effects

Structuring code with side-effects

With side effects, we have to violate the one-expression-per-function rule.

An if with no ”else” clause, or a cond where all the tests return false,
might return *nothing*, or void. Functions with side effects like
newline also return void.

(begin exp1 exp2 ...)

This evaluates all the given expressions, sequentially, and
only returns the value of the last expression.
Notice how long it took us to need this!
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Side Effects

Mutation!

The built-in special form (set! x val)

changes the value of x to be val.

Say we want a function that will print out how many times it’s been
called. The following factory produces one of those:

(define (make-counter)

(let ((count 0))

(lambda ()

(set! count (+ 1 count ))

(display count)

(newline ))))
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Side Effects

Closures

Notice that make-counter makes a different count variable each time it is
called.

This is because each lambda call produces a closure — the function along
with its referencing environment.

Save yourself a lot of trouble:
The changing “state” variable (i.e., the let) must be
inside the function (i.e., the define), but
outside the lambda.
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Side Effects

Objects in Scheme

We can use closures and mutation to do OOP in Scheme!

More sophisticated counter:

(define (make-counter-obj)

(let ((count 0))

(lambda (command)

(cond [( symbol =? command ’get) count]

[( symbol =? command ’inc)

(set! count (+ 1 count ))]

[( symbol =? command ’reset)

(set! count 0)]))))

The object now has three methods: get, inc, and reset.
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Side Effects

Built-in Data Structures

Scheme has some useful built-in data structures:

Arrays (called “vectors”).

(define A (make-vector 5))

(vector-set! A 3 ’something)

(vector-ref A 3) ; produces ’something

(vector-ref A 5) ; error: out of bounds

Hash tables

(define H (make-eqv-hashtable ))

(hashtable-set! H 2 ’something)

(hashtable-set! H ’another-key ’crazy !)

(hashtable-contains? H 2) ;true

(hashtable-ref H ’another-key ’default) ;’crazy!

(hashtable-ref H 1234 ’default) ;’default
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Efficiency

Inefficiency in Scheme

Recall the problem of computing Fibonacci numbers from lab 1.

(define (fib n)

(if (<= n 1)

n

(+ (fib (- n 1))

(fib (- n 2)))))

Why is this function so slow?
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Efficiency

Memoization in Scheme

Recall: Memoization is remembering the results of previous function calls,
and never repeating the same computation.

Why is functional programming perfect for memoization?

Scheme’s built-in hashes can be used to memoize.
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Efficiency

Memoizing Fibonacci

Here’s how we might memoize the Fibonacci function:

(define fib-memo

(let ((memo (make-eqv-hashtable )))

(define (fib-internal n)

(cond [(<= n 1) n]

[( hashtable-contains? memo n)

(hashtable-ref memo n ’())]

[else

(let ((val (+ (fib-internal (- n 1))

(fib-internal (- n 2)))))

(hashtable-set! memo n val)

val )]))

fib-internal ))
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Efficiency

Stack space in recursive calls

Recursive calls can use a lot of memory, even when the results are puny.

;; Sum of squares from 1 to n

(define (ssq n)

(if (= n 0)

0

(+ (sqr n) (ssq (- n 1)))))

Why does (ssq 4000000) run out of memory?
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Efficiency

Stack space in recursive calls

This function does the same thing, but takes an extra argument that
serves as an accumulator.

;; Sum of squares using tail recursion

(define (ssq-better n accum)

(if (= n 0)

accum

(ssq-better (- n 1)

(+ (sqr n) accum ))))

Now (ssq-better 4000000 0) actually works!
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Efficiency

Tail recursion

The second version worked because there was no need to make a stack of
recursive calls.

A function is tail recursive if its output expression in every recursive case is
only the recursive call.

In Scheme, this means the recursive call is outermost
in the returned expression.

ssq-better is better because it is tail recursive!
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Efficiency

Tail recursion for Fibonacci

To implement tail recursion we usually make a helper function:

(define (fib-helper n i fib-of-i fib-of-i +1)

(if (= i n)

fib-of-i

(fib-helper

n

(+ i 1)

fib-of-i +1

(+ fib-of-i

fib-of-i +1))))

The main function then becomes:

(define (fib-tail n) (fib-helper n 0 0 1))
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