
Scheme

The Scheme Language

History of Scheme

1958: Lisp language invented by John McCarthy
(based on Church’s lambda calculus, alternative to Turing machines)

1958: Steve Russell writes eval in machine code,
creates first Lisp interpreter

1962: First Lisp compiler, written in Lisp

1970s, 80s, 90s: Lisp is the dominant language for AI research

1975: Scheme created by Steele & Sussman:
minimal Lisp dialect focused on functional programming

1985: Structure and Interpretation of Computer Programs:
teaching Scheme in first-year at MIT

1991: How to Design Programs:
teaching Scheme to beginners based on design recipes

SI 413 (USNA) Unit 2 Fall 2021 1 / 23

Scheme

Scheme building blocks

From Lab 01:

Syntax: (procedure arg1 arg2 ...)

Arithmetic: +, *, remainder, etc.

Logic: and, or, not, <, etc.

define: Create constants and functions

if and cond

cons, car, cdr

SI 413 (USNA) Unit 2 Fall 2021 2 / 23

Lists and List Processing

Lists in Scheme

Remember how a singly-linked list works:

1 2 3

Making linked lists in Scheme:

Use cons for every node

Use ’() for the empty list

How to write the list above?

SI 413 (USNA) Unit 2 Fall 2021 3 / 23

Lists and List Processing

Using and building lists

’() is an empty list.

For an item a and list L, (cons a L) produces a list starting with a,
followed by all the elements in L.

(car L) produces the first thing in a non-empty list L.

(cdr L) produces a list with the first item of L removed.

Interpreter prints the list (cons 1 (cons 2 (cons 3 ’())))

as (1 2 3)

Lists can be nested.

SI 413 (USNA) Unit 2 Fall 2021 4 / 23

Lists and List Processing

Useful list functions

(list a b c ...)

builds a list with the elements a, b, c, . . .

cXXXr, where X is a or d. Shortcut for things like
(cdr (car (car (cdr L)))) → (cdaadr L)

(pair? L) — returns true iff L is a cons.

(null? L) — returns true iff L is an empty list.

(append L1 L2) — returns a list with the
elements of L1, followed by those of L2.
Can you write this function?

SI 413 (USNA) Unit 2 Fall 2021 6 / 23

Lists and List Processing

Recursion on lists

Here is a general pattern for writing a recursive function that processes a
list:

(define (list-fun L)

(if (null? L)

; Base case for empty list goes here

0

; Recursive case goes here.

; Get the recursive call and do something with it!

(+ 1 (list-fun (cdr L)))))

SI 413 (USNA) Unit 2 Fall 2021 7 / 23

Quoting

Symbols

Scheme has a new data type: symbols:

They are kind of like strings

Except they’re immutable (can’t be altered)

Somewhat similar to enum’s in C.

Usually symbols are short words (no spaces)

The predicate symbol? is useful!

Use eqv? for comparisons.

To make a symbol, use a single quote: ’these ’are ’all ’symbols ‘!

Typical Uses

Names from a short list (months, weekdays, grades, . . .)

Used to tag data: (cons 10.3 ’feet)

SI 413 (USNA) Unit 2 Fall 2021 9 / 23

Quoting

Quoting

The single quote ’ is a shorthand for the quote function.
So (quote something) is the same as ’something.

Quoting in Scheme means “don’t evaluate this”
— and it’s really useful!

What do you think (quote (1 2 3)) would produce?
How else could you get the same thing?

SI 413 (USNA) Unit 2 Fall 2021 10 / 23

Quoting

Quoting Lists

Quote is the reason why ’() means an empty list.
You can also use it for a nonempty list: ’(a b c).

Quote also works recursively, so we can make nested lists: ’(1 (2 3) 4) is
equivalent to (list 1 (list 2 3) 4)

What do you think this program will produce?

(define x 3)

’(1 2 x)

(list 1 2 x)

SI 413 (USNA) Unit 2 Fall 2021 11 / 23

Let

The need for local variables

This code finds the largest number in a list:

(define (lmax L)

(cond ((null? (cdr L)) (car L))

((>= (car L) (lmax (cdr L))) (car L))

(else (lmax (cdr L)))))

What’s the worst-case running time?
How could we fix it?

SI 413 (USNA) Unit 2 Fall 2021 13 / 23

Let

The let special form

Scheme provides let as a way to re-use temporary values:

(define (lmax L)

(if (null? (cdr L))

(car L)

(let ((rest-max (lmax (cdr L))))

(if (>= (car L) rest-max)

(car L)

rest-max))))

Note the extra parentheses — to allow multiple definitions:
(let ((a 5) (b 6)) (+ a b)) ⇒ 11

SI 413 (USNA) Unit 2 Fall 2021 14 / 23

Syntactic Building Blocks

Components of Programs

The basic building blocks of any programming language are
atoms, values, expressions, and statements.

Of course they are related:

Every atom is a value.

Every value is an expression.

Expressions specify the data in statements.

A program is a series of statements.

SI 413 (USNA) Unit 2 Fall 2021 16 / 23

Syntactic Building Blocks

Atoms and Values

An atom is an indivisible piece of data.
Sometimes these are called “literals”.
Examples of atoms: numbers, chars,. . .

A value is any fixed piece of data..
Values include atoms, but can also include more complicated things like:
arrays, lists,. . .

SI 413 (USNA) Unit 2 Fall 2021 17 / 23

Syntactic Building Blocks

Expressions and Statements

An expression is code that evaluates to a value.
Examples: arithmetic, function calls,. . .

A statement is a stand-alone complete instruction.

In Scheme, every expression is also a statement.

In C++, most statements end in a semicolon.

SI 413 (USNA) Unit 2 Fall 2021 18 / 23

Syntactic Building Blocks

Scheme grammar

Here is a CFG for the Scheme syntax we have seen so far:

CFG for Scheme

exprseq → expr | exprseq expr
expr → atom | (exprseq)

atom → identifier | number | boolean

This is incredibly simple!

SI 413 (USNA) Unit 2 Fall 2021 19 / 23

Evaluation Model in Scheme

Scheme is lists!

Everything in Scheme that looks like a list. . . is a list!
Scheme evaluates a list by using a general rule:

First, turn a list of expressions (e1 e2 e3 ...) into a list of values
(v1 v2 v3 ...) by recursively evaluating each e1, e2, etc.

Then, apply the procedure v1 to the arguments v2, v3, . . .

Can you think of any exceptions to this rule?
What if v1 is not a procedure?

SI 413 (USNA) Unit 2 Fall 2021 20 / 23

Evaluation Model in Scheme

Special Forms

The only exceptions to the evaluation rule are the special forms.

Special forms we have seen: define, if, cond, and, or.

What makes these “special” is that they
do not (always) evaluate (all) their arguments.

Example: evaluating (5) gives an error, but
(if #f (5) 6) just returns 6 — it never evaluates the “(5)” part.

SI 413 (USNA) Unit 2 Fall 2021 21 / 23

Evaluation Model in Scheme

Scheme evaluation and unevaluation

We can use the built-in function eval to evaluate a Scheme expression
within Scheme!

Try (eval (list + 1 2))

Even crazier: (eval (list ’define ’y 100))

What is the opposite (more properly, the inverse) of eval?

This makes Scheme homoiconic and self-extensible

SI 413 (USNA) Unit 2 Fall 2021 22 / 23

