
Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Control Flow

The control flow of a program is the way an execution moves
from statement to statement.
The textbook breaks it down into:

• Sequencing (do the next thing)

• Selection (pick something to do, e.g. if, switch)

• Iteration (repeat something, e.g. while, for)

• Recursion

• Unstructured (e.g. goto)

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Unstructured flow: GOTO

In the beginning, there was GOTO. And GOTO was good.

• Directly jumps from one place (the goto)
to another (the label)

• Corresponds exactly to machine code

• Very efficient

• Can cause some problems. . .

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Good Use of Goto?

Say we want to print a vector with commas like “1, 2, 3”.

This solution prints an extra comma!

vector <int > v;

// ...

int i = 0;

while (i < v.size ()) {

cout << v[i] << ” , ”;
++i;

}

cout << endl;

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Goto Problems

• They don’t play well with scopes.
(Restricting to local gotos avoids this.)

• Can be used to cook up “spaghetti code”
— hard to follow.

• Hard to know where we are in the program,
i.e., hard to reason about the program’s
correctness/performance.

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

int x = 0;

char c;

goto rs;

fns:

if (c != ’ 1 ’ && c != ’ 0 ’) goto er;

goto ns;

rd:

c = getchar ();

ns:

if (c == ’ 1 ’) { x = x*2 + 1; goto rd; }

if (c == ’ 0 ’) { x = x*2; goto rd; }

es:

if (c == ’ ’)
{

c = getchar ();

goto es;

}

if (c == ’ \n ’) goto done;

er:

printf(” E r r o r !\ n”);
return 1;

rs:

c=getchar ();

if (c == ’ ’) goto rs;

else goto fns;

done:

printf(”%i \n”,x);

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Structured Programming

Structured programming is probably all you have ever known.

Championed by Dijkstra in the pioneering paper “GOTO
Statement Considered Harmful” (1968).

Structured programming uses control structures such as
functions, if, while, for, etc., even though these are mostly
compiled into gotos.

Allows us to reason about programs, enforce modularity, write
bigger and better programs.

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Looping over a Collection

How would you write C++ code to loop over the elements of

• an array?

• a linked list?

• a binary search tree?

How can we separate interface from implementation?

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Iterators

An iterator needs to be able to:

• Get initialized over a collection.

• Move forward (maybe backwards?) through a collection.

• Fetch the current element

• Know when it’s done.

In C++, an iterator overrides ++ and * to become an abstract
pointer.

In most other languages (e.g., Java), an iterator has to extend
an abstract base type with next() and hasNext() methods.

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

For-Each Loops

A for-each loop provides an even easier way to
loop over the elements of a collection.

Java example:

HashSet <String > hs;

// ...

for (String s : hs) {

System.out.println(s);

// This prints out all the strings in the HashSet.

}

This construct is supported by most modern languages.
Often there is a direct connection with iterators.
In some languages (e.g., Python), this is the only for loop.

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Dirty Switches
switch statements blur the line between structured and
unstructured programming.

Here’s my favorite solution to the “print with commas”
problem:

vector <int > v;

// ...

int i = 0;

switch(v.empty ()) {

for (; i < v.size (); ++i) {

cout << ” , ”;
case false:

cout << v[i];

}

}

cout << endl;

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Aside: Scripting Languages

bash, Ruby, Python, Pearl, and PHP are examples of
scripting languges.
They are designed for small tasks that involve coordination or
communication with other programs.

Common properties:

• Interpreted, with dynamic typing

• Emphasis on expressivity and ease of programming over
efficiency

• Allows multiple paradigms (functional, imperative,
object-oriented)

• Built-in string handling, data types

• Extensive “shortcut” syntactic constructs

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Scripting example: Prime
generation in Python

def PrimeGen ():

for p in itertools.count (2):

if all(p%i != 0 for i in range(2,p)):

yield p

for p in PrimeGen ():

if p < 100: print(p)

else: break

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Generators

Sometimes a function computes multiple values as it goes
along.

An iterator created automatically from such a function is called
a generator

Simpler (related) Python example:

def factors(n):

for i in range(2,n):

if n % i == 0: yield i

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

The Need for Generic Code

A function is an abstraction of similar behavior with different
values.

Generic code takes this to the next level, by abstracting similar
functions (or classes) with different types.

Most common usages:

• Basic functions: min/max, sorting

• Collections: vector, linked list, hash table, etc.

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Genericity in Scheme

In Scheme and other languages with run-time type checking,
writing generic functions is (mostly) trivial.

Generic minimum function:

(define (minimum a b)

(if (<= a b) a b))

Generic binary tree structure:

(define (make-bt ele left right)

(lambda (command)

(cond [(symbol =? command ’left) left]

[(symbol =? command ’right) right]

[(symbol =? command ’root) ele])))

(define BST (make-bt 4 (make-bt 2 (make-bt 1 null null)

(make-bt 3 null null))

(make-bt 6 (make-bt 5 null null)

(make-bt 7 null null))))

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Genericity in C++

Old School (C style)

• Use function-like macros to code-generate every possibility.

• Types to be used in generic functions/classes must be
explicitly specified.

Templates (C++ style)

• Built into the language; don’t rely on preprocessor

• Compiler does code generation, similar to macros

• Types to be used are determined implicitly at compile-time

• Separate compilation becomes difficult or impossible.

#define WRITE_LL_CLASS(T) \

class Node_ ## T { \

public: \

T data; \

Node_ ## T * next; \

Node_ ## T (T d, Node_ ## T * n) :data(d), next(n) { } \

\

T printAndSum () { \

cout << data << endl; \

if (next == NULL) return data; \

else return data + next ->printAndSum (); \

} \

};

WRITE_LL_CLASS(float)

WRITE_LL_CLASS(int)

int main() {

Node_float* fhead = NULL;

Node_int* ihead = NULL;

// ... fill the lists with some input

cout << ” F l o a t i n g sum : ” << fhead ->printAndSum () << endl << endl;

cout << ” I n t sum : ” << ihead ->printAndSum () << endl << endl;

}

template <class T>

class Node {

public:

T data;

Node <T> * next;

Node <T> (T d, Node <T> * n) :data(d), next(n) { }

T printAndSum () {

cout << data << endl;

if (next == NULL) return data;

else return data + next ->printAndSum ();

}

};

int main() {

Node <float >* fhead = NULL;

Node <int >* ihead = NULL;

// ... fill the lists with some input

cout << ” F l o a t i n g sum : ” << fhead ->printAndSum () << endl << endl;

cout << ” I n t sum : ” << ihead ->printAndSum () << endl << endl;

return 0;

}

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Genericity in Java

Old School (Java ≤ 1.4)

• Use abstract base classes/interfaces like Object

• Make extensive use of polymorphism

• Lots of upcasting and downcasting

Generics (Java ≥ 5)

• Similar syntax to C++ templates

• Compiler checks type safety then removes generic type
information

• Up/downcasting still performed, implicitly

• Generics are only syntactic sugar

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Manual Genericity in Java

interface Sum { void add(Number x); }

class FloatSum implements Sum {

float val = 0;

public void add(Number x)

{ val += ((Float)x). floatValue (); }

public String toString () { return String.valueOf(val); }

}

class IntSum implements Sum {

int val = 0;

public void add(Number x)

{ val += ((Integer)x). intValue (); }

public String toString () { return String.valueOf(val); }

}

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

class LLOld {

Number data;

LLOld next;

LLOld(Number d, LLOld n) { data = d; next = n; }

Sum printAndSum(Sum summer) {

System.out.println(data);

summer.add(data);

if (next != null) next.printAndSum(summer);

return summer;

}

public static void main(String [] args) {

LLOld flist = null;

LLOld ilist = null;

// ... fill the lists with some input

System.out.println(” F l o a t i n g sum : ” +

flist.printAndSum(new FloatSum ()) + ”\n”);
System.out.println(” I n t e g e r sum : ” +

ilist.printAndSum(new IntSum ()) + ”\n”);
}

}

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Java 5 Generics

interface Sum <T> { void add(T x); }

class FloatSum implements Sum <Float > {

float val = 0;

public void add(Float x)

{ val += x.floatValue (); }

public String toString () { return String.valueOf(val); }

}

class IntSum implements Sum <Integer > {

int val = 0;

public void add(Integer x)

{ val += x.intValue (); }

public String toString () { return String.valueOf(val); }

}

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

class LLNew <T> {

T data;

LLNew <T> next;

LLNew(T d, LLNew <T> n) { data = d; next = n; }

Sum <T> printAndSum(Sum <T> summer) {

System.out.println(data);

summer.add(data);

if (next != null) next.printAndSum(summer);

return summer;

}

public static void main(String [] args) {

LLNew <Float > flist = null;

LLNew <Integer > ilist = null;

// ... fill the lists with some input

System.out.println(” F l o a t i n g sum : ” +

flist.printAndSum(new FloatSum ()) + ”\n”);
System.out.println(” I n t e g e r sum : ” +

ilist.printAndSum(new IntSum ()) + ”\n”);
}

}

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Trade-Offs in Generics

• No declared types
• No enforced notion of “list of integers” etc.
• Requires dynamic typing; slower

• Code Generation (C++ templates)
• Can result in (combinatorial!) code explosion
• Very powerful and general, but somewhat unintuitive

• Code Annotation (Java 5 generics)
• Syntactic sugar; extensive run-time casting results
• Types not known to the program at runtime —

eliminates some capabilities

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Permissions

What things might you want to do with software (binary)
or with its source code?

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Non-Free Licenses

• Proprietary

• Shareware

• Freeware

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Free Software Licenses

• GPL

• LGPL

• Permissive

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Case Studies

• Template programming and the LGPL

• Linux on the Kindle

• Iceweasel

• Vernor v. Autodesk

• “Badgeware” and CPAL

Unit 10

SI 413

Control Flow

GOTO

Structured
Programming

Generators

Generics

Software
Licenses

Class outcomes

You should know:

• What structured vs unstructured programmings is.

• The goods and bads of GOTOs

• What an iterator is, and where/how/why they are used.

• What a for-each loop is, and where/how/why they are
used.

• What a scripting language is

• What a generator is

• What a generic class/function is

• How genericity works in C++ and Java

• Major types of software licenses

• What copyleft is and why it matters

